Department of Mathematical Sciences, University of Aberdeen, Meston Building, Aberdeen AB24 3UE, UK and Institute of Mathematics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland (kedra@maths.abdn.ac.uk))
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We give a simple proof of the Lalonde–McDuff Conjecture for aspherical manifolds.
1.Atiyah, M. F. and Bott, R., The moment map and equivariant cohomology, Topology23(1) (1984), 1–28.CrossRefGoogle Scholar
2
2.Blanchard, A., Sur les variétés analytiques complexes, Annales Scient. Éc. Norm. Sup.73 (1956), 157–202.CrossRefGoogle Scholar
3
3.Gottlieb, D. H., A certain subgroup of the fundamental group, Am. J. Math.87 (1965), 840–856.CrossRefGoogle Scholar
4
4.Hatcher, A., Algebraic topology (Cambridge University Press, 2002).Google Scholar
5
5.Lalonde, F. and McDuff, D., Symplectic structures on fiber bundles, Topology42(2) (2003), 309–347.CrossRefGoogle Scholar
6
6.McDuff, D., Quantum homology of fibrations over S2, Int. J. Math.11(5) (2000), 665–721.CrossRefGoogle Scholar
7
7.McDuff, D. and Salamon, D., J-holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications, Volume 52 (American Mathematical Society, Providence, RI, 2004).Google Scholar
8
8.Stepień, Z., The Lalonde–McDuff conjecture for nilmanifolds, Diff. Geom. Applic.26(3) (2008), 267–272.CrossRefGoogle Scholar