Hostname: page-component-6bb9c88b65-znhjv Total loading time: 0 Render date: 2025-07-25T15:44:35.279Z Has data issue: false hasContentIssue false

Crystal structure of RbCdVO4 from X-ray laboratory powder diffraction

Published online by Cambridge University Press:  17 July 2025

Gwilherm Nénert*
Affiliation:
Malvern Panalytical B.V., Lelyweg 1, 7602 EA Almelo, The Netherlands
*
Corresponding author: Gwilherm Nénert; Email: gwilherm.nenert@malvernpanalytical.com

Abstract

Data mining for materials science and structure prediction is growing rapidly. Such an approach relies a lot on the available published and unpublished crystal structure. In this contribution, we are using the experimental pattern reported in the PDF entry 00-058-0728 for the experimental data used to solve the previously unreported crystal structure of RbCdVO4. Contrary to the reported literature, the title compound crystallizes in the monoclinic system P21 with Z = 4. The lattice parameters are a = 12.53678(16) Å, b = 5.82451(7) Å, c = 12.47733(17) Å, β = 105.6169(10)°, and V = 877.47(2) Å3. Its crystal structure type is new and quite complex as it exhibits 28 atoms in the asymmetric unit.

Information

Type
Technical Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Boudin, S., Grandin, A., Borel, M. M., Leclaire, A. and Raveau, B.. 1994. “A Trivalent Vanadium Monophosphate with a Tunnel Structure: Cd3V4(PO4)6 .Journal of Solid State Chemistry 110: 4349. https://doi.org/10.1006/jssc.1994.1133.CrossRefGoogle Scholar
Boultif, A., and Louër, D.. 2004. “Powder Pattern Indexing with the Dichotomy Method.” Journal of Applied Crystallography 37: 724–31. https://doi.org/10.1107/S0021889804014876.CrossRefGoogle Scholar
Brown, I. D. 2009. “Recent Developments in the Methods and Applications of the Bond Valence Model.” Chemical Reviews 109: 6858–919. https://doi.org/10.1021/cr900053k.CrossRefGoogle Scholar
Capillas, C., Tasci, E. S., de la Flor, G., Orbengoa, D., Perez-Mato, J. M. and Aroyo, M. I.. 2011. “A New Computer Tool at the Bilbao Crystallographic Server to Detect and Characterize Pseudosymmetry.” Zeitschrift für Kristallographie 226 (2): 186–96. https://doi.org/10.1524/zkri.2011.1321.CrossRefGoogle Scholar
Degen, T., Sadki, M., Bron, E., König, U., and Nénert, G.. 2014. “The HighScore Suite.” Powder Diffraction 29 (S2): S13–18. https://doi.org/10.1017/S0885715614000840.CrossRefGoogle Scholar
Hansing, J., and Möller, A.. 2001. “Rb2CdSiO4: Synthesis and Crystal Structure.” Journal of Solid State Chemistry 162: 214–19. https://doi.org/10.1006/jssc.2001.9257.CrossRefGoogle Scholar
Isupov, V. A. 2002. “Phase Transitions in Anhydrous Phosphates, Vanadates and Arsenates of Monovalent and Bivalent Elements.” Ferroelectrics, 274: 203–83. https://doi.org/10.1080/00150190213949.CrossRefGoogle Scholar
Kabekkodu, S. N., Dosen, A., and Blanton, T. N.. 2024. “PDF5+: A Comprehensive Powder Diffraction File™ for Materials Characterization.” Powder Diffraction 39: 4759. https://doi.org/10.1017/S0885715624000150.CrossRefGoogle Scholar
Leclaire, A., Grandin, A., Chardon, J., Borel, M., and Raveau, B.. 1993. “A New V(IV) Monophosphate Cd(VO)2(PO4)2 .European Journal of Solid State Inorganic Chemistry 30: 393400.Google Scholar
Markvardsen, A. J., Shankland, K., David, W. I. F., Johnston, J. C., Ibberson, R. M., Tucker, M., Nowell, H., and Griffin, T.. 2008. “ExtSym: A Program to Aid Space-Group Determination from Powder Diffraction Data.” Journal of Applied Crystallography 41: 1177–81. https://doi.org/10.1107/S0021889808031087.CrossRefGoogle Scholar
Nénert, G. 2017. “Synthesis and Crystal Structure of the New Vanadate AgCaVO4: Comparison with the Arcanite Structure.” Zeitschrift für Kristallographie 232 (10): 669–74. https://doi.org/10.1515/zkri-2017-2041.CrossRefGoogle Scholar
Nénert, G., O’Meara, P., and Degen, T.. 2017. “Crystal Structure and Polymorphism of NaSrVO4: The First AIBIIXVO4 Larnite-Related Structure from X-Ray Powder Diffraction Data.” Physics and Chemistry of Minerals 44: 455–63. https://doi.org/10.1007/s00269-017-0873-6.CrossRefGoogle Scholar
Petricek, V., Dusek, M., and Palatinus, L.. 2014. “Crystallographic Computing System JANA2006: General Features.” Zeitschrift für Kristallographie 229 (5): 345–52. https://doi.org/10.1515/zkri-2014-1737.CrossRefGoogle Scholar
Reid, J. W., and Kaduk, J. A.. 2021. “Crystal Structure of Donepezil Hydrochloride Form III, C24H29NO3⋅HCl.” Powder Diffraction 36: 233–40.10.1017/S0885715621000415CrossRefGoogle Scholar
Reid, J. W., Kaduk, J. A., and Vickers, M.. 2016. “The Crystal Structure of Trandolapril, C24H34N2O5: An Example of the Utility of Raw Data Deposition in the Powder Diffraction File.” Powder Diffraction 31: 205–10.10.1017/S0885715616000294CrossRefGoogle Scholar
Riesel, E. A., Mackey, T., Nilforoshan, H., Xu, M., Badding, C. K., Altman, A. B., Leskovec, J., and Freedman, D. E.. 2024. “Crystal Structure Determination from Powder Diffraction Patterns with Generative Machine Learning.” Journal of the American Chemical Society 146: 30340–48.10.1021/jacs.4c10244CrossRefGoogle ScholarPubMed
Trujillo, D. P., Gurung, A., Yu, J., Nayak, S. K., Alpay, S. P., and Janolin, P.-E.. 2022. “Data-Driven Methods for Discovery of Next-Generation Electrostrictive Materials.” npj Computational Materials 8: 251. https://doi.org/10.1038/s41524-022-00941-1.CrossRefGoogle Scholar
Zubkov, V., and Tyutyunnik, A.. 2007. Institute of Solid State Chemistry, Ekaterinburg, Russian Federation, ICDD Grant-in-Aid.Google Scholar