Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Umemura, Hiroshi
and
Watanabe, Humihiko
1998.
Solutions of the third Painlevé equation I.
Nagoya Mathematical Journal,
Vol. 151,
Issue. ,
p.
1.
Kajiwara, Kenji
and
Masuda, Tetsu
1999.
A generalization of determinant formulae for the solutions of Painlevé II and XXXIV equations.
Journal of Physics A: Mathematical and General,
Vol. 32,
Issue. 20,
p.
3763.
Okamoto, Kazuo
1999.
The Painlevé Property.
p.
735.
Umemura, Hiroshi
2000.
On the transformation group of the second Painlevé equation.
Nagoya Mathematical Journal,
Vol. 157,
Issue. ,
p.
15.
Clarkson, P. A.
Mansfield, E. L.
and
Webster, H. N.
2000.
On the relation between the continuous and discrete Painlevé equations.
Theoretical and Mathematical Physics,
Vol. 122,
Issue. 1,
p.
1.
Кларксон, П А
Clarkson, P A
Менсфилд, Э Л
Mansfield, E L
Вебстер, Х Н
and
Webster, H N
2000.
О соотношении между дискретными и непрерывными уравнениями Пенлеве.
Теоретическая и математическая физика,
Vol. 122,
Issue. 1,
p.
5.
Clarkson, Peter A
2003.
The third Painlev equation and associated special polynomials.
Journal of Physics A: Mathematical and General,
Vol. 36,
Issue. 36,
p.
9507.
Clarkson, Peter A.
2003.
The fourth Painlevé equation and associated special polynomials.
Journal of Mathematical Physics,
Vol. 44,
Issue. 11,
p.
5350.
Clarkson, Peter A.
2003.
Remarks on the Yablonskii–Vorob'ev polynomials.
Physics Letters A,
Vol. 319,
Issue. 1-2,
p.
137.
Clarkson, Peter A
2003.
Painlevé equations—nonlinear special functions.
Journal of Computational and Applied Mathematics,
Vol. 153,
Issue. 1-2,
p.
127.
Joshi, N
and
Mazzocco, M
2003.
Existence and uniqueness of tri-tronqu e solutions of the second Painlev hierarchy.
Nonlinearity,
Vol. 16,
Issue. 2,
p.
427.
Clarkson, Peter A
and
Mansfield, Elizabeth L
2003.
The second Painlev equation, its hierarchy and associated special polynomials.
Nonlinearity,
Vol. 16,
Issue. 3,
p.
R1.
Kaneko, Kazuo
2005.
A new solution of the fourth Painlevé equation with a solvable monodromy.
Proceedings of the Japan Academy, Series A, Mathematical Sciences,
Vol. 81,
Issue. 5,
Clarkson, Peter A.
2005.
Theory and Applications of Special Functions.
Vol. 13,
Issue. ,
p.
123.
Joshi, N
2006.
Encyclopedia of Mathematical Physics.
p.
31.
Joshi, Nalini
Kajiwara, Kenji
and
Mazzocco, Marta
2006.
Generating Function Associated with the Hankel Determinant Formula for the Solutions of the Painleve IV Equation.
Funkcialaj Ekvacioj,
Vol. 49,
Issue. 3,
p.
451.
Clarkson, Peter A.
2006.
Special Polynomials Associated with Rational Solutions of the Painlevé Equations and Applications to Soliton Equations.
Computational Methods and Function Theory,
Vol. 6,
Issue. 2,
p.
329.
Joshi, N.
2006.
Encyclopedia of Mathematical Physics.
p.
1.
Demina, Maria V.
and
Kudryashov, Nikolai A.
2007.
The Yablonskii–Vorob’ev polynomials for the second Painlevé hierarchy.
Chaos, Solitons & Fractals,
Vol. 32,
Issue. 2,
p.
526.
Kudryashov, Nikolai A.
and
Demina, Maria V.
2007.
Relations between zeros of special polynomials associated with the Painlevé equations.
Physics Letters A,
Vol. 368,
Issue. 3-4,
p.
227.