We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We identify the monster from two of its 7-constrained maximal 7-local subgroups.
[1]Alperin, J. L., Local representation theory, volume 11 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1986. Modular representations as an introduction to the local representation theory of finite groups.Google Scholar
[2]
[2]Bender, H., Finite groups with dihedral Sylow 2-subgroups, J. Alg., 70 (1981), no. 1, 216–228.CrossRefGoogle Scholar
[3]
[3]Bender, H. and Glauberman, G., Characters of finite groups with dihedral Sylow 2-subgroups, J. Alg., 70 (1981), no. 1, 200–215.CrossRefGoogle Scholar
[4]
[4]Brauer, R. and Suzuki, M., On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 1757–1759.CrossRefGoogle Scholar
[5]
[5]Conway, J. H.Curtis, R. T.Norton, S. P., Parker, R. A., and Wilson, R. A., Atlas of finite groups, Clarendon Press, Oxford, 1985.Google Scholar
[6]
[6]Gorenstein, D., Finite Groups, Harper and Row, New York, 1968.Google Scholar
[7]
[7]Gorenstein, D. and Lyons, R., The local structure of finite groups of characteristic 2 type, Mem. Am. Math. Soc. 42(276), 1983, vii+731.Google Scholar
[8]
[8]Gorenstein, D., Lyons, R., and Solomon, R., The Classification of the Finite Simple Groups, Number 2, volume 40 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1996.Google Scholar
[9]
[9]Gorenstein, R., Lyons, D., and Solomon, R., The Classification of the Finite Simple Groups, Number 3, volume 40 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1998.Google Scholar
[10]
[10]Gorenstein, D. and Walter, J. H., The characterization of finite groups with dihedral Sylow 2-subgroups. I, J. Alg., 2 (1965), 85–151.CrossRefGoogle Scholar
[11]
[11]Gorenstein, D. and Walter, J. H., The characterization of finite groups with dihedral Sylow 2-subgroups. II, J. Alg., 2 (1965), 218–270.Google Scholar
[12]
[12]Griess, R., Meierfrankenfeld, U., and Segev, Y., A uniqueness proof for the Monster, Ann. Math., 130 (1989), 567–602.CrossRefGoogle Scholar
[13]
[13]Griess, R. L., A remark about representations of .1, Comm. Algebra, 13 (1985), 835–844.CrossRefGoogle Scholar
[14]
[14]Ho, C. Y., A new 7-local subgroup of the Monster, J. Algebra, 115 (1988), no. 2, 513–520.CrossRefGoogle Scholar
[15]
[15]Ivanov, A. A., A geometric characterization of the Monster, Groups, combinatorics & geometry (Durham, 1990), volume 165 of London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge (1992), pp. 46–62.Google Scholar
[16]
[16]Ivanov, A. A. and Meierfrankenfeld, U., Simple connectedness of the 3-local geometry of the Monster, J. Algebra, 194 (1997), no. 2, 383–407.CrossRefGoogle Scholar
[17]
[17]Jansen, C.Lux, K., Parker, R., and Wilson, R., An atlas of Brauer characters, volume 11 of London Mathematical Society Monographs, New Series, The Clarendon Press Oxford University Press, New York, 1995. Appendix 2 by Breuer, T. and Norton, S., Oxford Science Publications.Google Scholar
[18]
[18]Kleidman, P. B., The maximal subgroups of the Chevalley groups G2(q) with q odd, the Ree groups 2G2(q), and their automorphism groups, J. Algebra, 117 (1988), no. 1, 30–71.CrossRefGoogle Scholar
[19]
[19]Kurzweil, H. and Stellmacher, B., Theorie der endlichen Gruppen, Springer-Verlag, Berlin, 1998. Eine Einführung. [An introduction].CrossRefGoogle Scholar
[20]
[20]Meierfrankenfeld, U., Stellmacher, B., and Stroth, G., Finite groups of local characteristic p: An overview, Groups, combinatorics & geometry (Durham, 2001), World Sci. Publishing, River Edge, NJ (2003), pp. 155–192.Google Scholar
[21]
[21]Parker, C. W. and Rowley, P. J., A characteristic 5 identification of the Lyons group, J. London Math. Soc. (2), 69 (2004), no. 1, 128–140.CrossRefGoogle Scholar
[22]
[22]Parker, C. W. and Rowley, P. J., Symplectic Amalgams, Springer, London, 2002.CrossRefGoogle Scholar
[23]
[23]Parker, C. W. and Wiedorn, C. B., A 5-local identification of the Monster, Arch. Math., 83 (2004), 404–415.CrossRefGoogle Scholar
[24]
[24]Parker, C. W. and Wiedorn, C. B., 5-local identifications of the Harada Norton group and of the Baby Monster, in preparation (2003).Google Scholar
[25]
[25]Wilson, R. A., The odd local subgroups of the Monster, J. Austral. Math. Soc. Ser. A, 44 (1988), no. 1, 1–16.Google Scholar