Hostname: page-component-54dcc4c588-64p75 Total loading time: 0 Render date: 2025-10-10T04:26:38.227Z Has data issue: false hasContentIssue false

Stretched Exponential Stress Relaxation in a ThermallyReversible, Physically Associating Block Copolymer Solution

Published online by Cambridge University Press:  21 February 2012

Kendra A. Erk
Affiliation:
Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60202 Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
Jack F. Douglas
Affiliation:
Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
Get access

Abstract

The shear stress relaxation of a thermally reversible, physicallyassociating solution formed from a triblock copolymer in solvent selectivefor the mid-block was found to be well described over a broad temperaturerange by a stretched exponential function with a temperature independent‘stretching exponent’, β ≈ 1/3. This same exponent valuehas been suggested to have particular significance in describing structuralrelaxation in a wide range of disordered viscoelastic materials ranging fromassociating polymer materials (‘gels’) to glass-forming liquids. We quantifythe temperature dependence of the high frequency, or short time, shearmodulus as function of temperature and find that this property also followsa variation often observed in gels and glass-forming materials.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

[1] Palmer, R. G., Stein, D. L., Abrahams, E., and Anderson, P. W., Phys. Rev. Lett. 53, 958961 (1984).CrossRefGoogle Scholar
[2] Séréro, Y., Jacobsen, V., Berret, J. F., and May, R., Macromolecules 33, 18411847 (2000).CrossRefGoogle Scholar
[3] Hotta, A., Clarke, S. M., and Terentjev, E. M., Macromolecules 35, 271277 (2002).CrossRefGoogle Scholar
[4] Erk, K. A. and Shull, K. R., Macromolecules 44, 932939 (2011).CrossRefGoogle Scholar
[5] Seitz, M. E., Burghardt, W. R., Faber, K. T., and Shull, K. R., Macromolecules 40, 12181226 (2007).CrossRefGoogle Scholar
[6] Bras, R. E. and Shull, K. R., Macromolecules 42, 85138520 (2009).CrossRefGoogle Scholar
[7] Erk, K. A., Martin, J. D., Hu, Y. T., and Shull, K. R., Accepted by Langmuir (2012).Google Scholar
[8] Baumberger, T., Caroli, C., and Martina, D., Nature Materials 5, 552555 (2006).CrossRefGoogle Scholar
[9] Erk, K. A., Henderson, K. J., and Shull, K. R., Biomacromolecules 11, 13581363 (2010).CrossRefGoogle Scholar
[10] Koga, T., Tanaka, F., Kaneda, I., and Winnik, F. M., Langmuir 25, 86268638 (2009).CrossRefGoogle Scholar
[11] Gurtovenko, A. A. and Gotlib, Y. Y., J. Chem. Phys. 115, 67856793 (2001).CrossRefGoogle Scholar
[12] Cavicchi, K. A. and Lodge, T. P., Macromolecules 36, 71587164 (2003).CrossRefGoogle Scholar
[13] Choi, S. H., Lodge, T. P., and Bates, F. S., Phys. Rev. Lett. 104, 4 (2010).Google Scholar
[14] Stukalin, E. B., Douglas, J. F., and Freed, K. F., Journal of Chemical Physics 129, (2008).CrossRefGoogle Scholar
[15] Douglas, J. F. and Hubbard, J. B., Macromolecules 24, 31633177 (1991).CrossRefGoogle Scholar
[16] Rehage, H. and Hoffmann, H., Mol. Phys. 74, 933973 (1991).10.1080/00268979100102721CrossRefGoogle Scholar
[17] Bartsch, E., Antonietti, M., Schupp, W., and Sillescu, H., J. Chem. Phys. 97, 39503963 (1992).CrossRefGoogle Scholar
[18] Alegria, A., Colmenero, J., Mari, P., and Campbell, I., Phys. Rev. E 59, 68886895 (1999).CrossRefGoogle Scholar
[19] Struik, L. C. E., Aging in Amorphous Polymers and Other Materials (Elsevier, New York, 1978). See Fig. 34 for creep data for diverse materials.Google Scholar
[20] Lin, D. C., Douglas, J. F., and Horkay, F., Soft Matter 6, 3548 (2010).CrossRefGoogle Scholar
[21] Douglas, J. F., Dudowicz, J., and Freed, K. F., J. Chem. Phys. 128, (2008).CrossRefGoogle Scholar
[22] Peleg, M., Rheol. Acta 32, 575580 (1993).CrossRefGoogle Scholar
[23] Peleg, M., Cereal Chem. 73, 712715 (1996).Google Scholar
[24] Nakanishi, S., Yoshikawa, H., Shoji, S., Sekkat, Z., and Kawata, S., J. Phys. Chem. B 112, 35863589 (2008).CrossRefGoogle Scholar
[25] Kumar, S. K. and Douglas, J. F., Phys. Rev. Lett. 87, 4 (2001).Google Scholar