Hostname: page-component-54dcc4c588-tfzs5 Total loading time: 0 Render date: 2025-10-11T20:20:10.164Z Has data issue: false hasContentIssue false

Nanomodified Endotracheal Tubes: Spatial Analysis of ReducedBacterial Colonization in a Bench Top Airway Model

Published online by Cambridge University Press:  30 March 2012

Mary C. Machado
Affiliation:
School of Engineering, Brown University, Providence RI, 02912, USA
Keiko M. Tarquinio
Affiliation:
Division of Pediatric Critical Care Medicine, Rhode Island Hospital, Providence RI, 02903, USA
Thomas J. Webster
Affiliation:
School of Engineering and Department of Orthopaedics, Brown University, Providence RI, 02912, USA.
Get access

Abstract

Ventilator associated pneumonia (VAP) is a serious and costly clinicalproblem. Specifically, receiving mechanical ventilation for over 24 hoursincreases the risk of VAP and is associated with high morbidity, mortalityand medical costs. Cost effective endotracheal tubes (ETTs) that areresistant to bacterial infection could help prevent this problem. Theobjective of this study was to determine differences in the growth of Staphylococcus aureus (S. aureus) onnanomodified and unmodified polyvinyl chloride (PVC) ETTs under dynamicairway conditions. PVC ETTs were modified to have nanometer surface featuresby soaking them in Rhizopus arrhisus, a fungal lipase.Twenty-four hour experiments (supported by computational models) showed thatair flow conditions within the ETT influenced both the location andconcentration of bacterial growth on the ETTs especially within areas oftube curvature. More importantly, experiments revealed a 1.5 log reductionin the total number of S. aureus on the novel nanomodifiedETTs compared to the conventional ETTs after 24 hours of air flow. Thisdynamic study showed that lipase etching can create nano-rough surfacefeatures on PVC ETTs that suppress S. aureus growth and,thus, may provide clinicians with an effective and inexpensive tool tocombat VAP.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1. Brilli, R.J., Sparling, K.W., Lake, M.R., Jt. Comm. J. Qual. Patient Saf. 34, 629638, (2008).Google Scholar
2. Richards, M.J., Edwards, J.R., Culver, D.H., Gaynes, R.P., National Nosocomial Infections Surveillance System, Pediatrics 103(4), e39(1999).Google Scholar
3. Baltimore, R.S., Pediatrics 112, 14201421 (2003).CrossRefGoogle Scholar
4. Gaynes, R. and Edwards, J.R., Clin. Infect. Dis. 41, 848854 (2005).Google Scholar
5. Koerner, R.J., Hosp, J.. Infect. 35, 8389 (1997).Google Scholar
6. Carsons, S. E., Fibronectin in Health and Disease. (CRC Press Inc., New York, 1989) p. 106.Google Scholar
7. Machado, M.C., Cheng, D., Tarquinio, K.M., Webster, T.J., Pediatr. Res. 67(5), 500504 (2010).CrossRefGoogle Scholar
8. Klein, J., Proc. Natl. Acad. Sci. U.S.A. 104, 20292030 (2007).CrossRefGoogle Scholar
9. Liu, H., and Webster, T.J., Biomaterials 28, 354369 (2006).CrossRefGoogle Scholar
10. Lichter, J.A., Thompson, M.T., Delgadillo, M., Nishikawa, T., Rubner, M.F., Van Vliet, K.J., Biomacromolecules 9(6), 15711578 (2008).Google Scholar
11. Diaz, C., Cortizo, M.C., Schilardi, P.L., Saravia, S.G.G., Mele, M.A.F.L., Mat. Res. 10(1), 1114 (2007).CrossRefGoogle Scholar
12. Berger, S.A., and Talbot, L., Annu. Rev. Fluid Mech. 15, 461512 (1983).CrossRefGoogle Scholar
13. Rusconi, R., Lecuyer, S., Guglielmini, L., Stone, H.A., Soc, J. R.. Interface 7, 12931299 (2010).Google Scholar
14. Rusconi, R., Lecuyer, S., Autrusson, N., Guglielmini, L., Stone, H. A., Biophysical Journal 100, 13921399 (2011).Google Scholar
15. Hartmann, M., Guttmann, J., Muller, B., Hallmann, T., Geiger, K., Technol. Health Care 7, 359370 (1999).CrossRefGoogle Scholar
16. Seil, J.T., Rubien, N.M., Webster, T.J., Tarquinio, K.M., J. Biomed. Mater. Res. B 9B(1), 17 (2011).Google Scholar
17. Dellinger, R., Jean, P., Cinel, S., Crit Care. 11, R26 (2007).Google Scholar
18. Tortora, G., Funke, R.B. and Case, L.C., Microbiology; An Introduction. (Addison-Wesley Longman, Inc., New York, 1998).Google Scholar
19. Davis, D. and Eisen, G., Bacterial Physiology: Microbiology, 2nd ed., (Harper and Row, Maryland, 1973) p.96-97.Google Scholar
20. Aniansson, G., Andersson, B., Lindstedt, R., Svanborg, C., Microb Pathogen 8, 315323 (1990).Google Scholar
21. Meisel, H., BioFactors 21, 5561 (2004).CrossRefGoogle Scholar