Hostname: page-component-54dcc4c588-mz6gc Total loading time: 0 Render date: 2025-10-08T18:31:01.727Z Has data issue: false hasContentIssue false

Ion Beam Slicing of Single Crystal Oxide ThinFilms

Published online by Cambridge University Press:  17 March 2011

S. Thevuthasan
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, theva@pnl.gov
V. Shutthanandan
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352
W. Jiang
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352
W. J. Weber
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352
Get access

Abstract

Epitaxial thin film liftoff using the ion-slicing method has been applied to SrTiO3 single crystals. Rutherford backscattering spectrometryalong with channeling (RBS/C) has been used to investigate the relativedisorder as a function of temperature from the samples that were irradiatedby 40 KeV hydrogen ions to a fluence of 5.0×1016 H+/cm2. Hydrogen profiles were also measured as afunction of annealing temperature to understand the role of hydrogen in theion slicing process. Film cleavage occurred during or after annealing at 570K, and cleaved film has been successfully transferred to a silicon substrateusing ceramic adhesive.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1. Bruel, M., Electron. Lett. 31, 1201(1995).Google Scholar
2. Dance, B., Semiconductor International, May, 58 (1997).Google Scholar
3. Maleville, C., Aspar, B., Poumeyrol, T., Moriceau, H., Bruel, M., Auberton-Herve, A.J., and Barge, T., Mater. Sci. and Eng. B46, 14 (1997).Google Scholar
4. Aspar, B., Bruel, M., Moriceau, H., Maleville, C., Poumeyrol, T., Papon, A.M., Claverie, A., Benassayag, G., Auberton-Herve, A.J., and Barge, T., Microelectron. Eng. 36, 233 (1997); B. Aspar, E. Jalaguier, A. Mas, C. Locatelli, O. Rayssac, H. Moriceau, S. Pocas, A.M. Papon, J.F. Michaud, and M. Bruel, Electron. Lett. 35, 1024 (1999).Google Scholar
5. Agarwal, A., Haynes, T.E., Venezia, V.C., Holland, O.W., and Eaglesham, D.J., Appl. Phys. Lett. 72, 1086 (1998).Google Scholar
6. Weldon, M.K., Collot, M., Chabal, Y.J., Venezia, V.C., Agarwal, A., Haynes, T.E., Eaglesham, D.J., Christman, S.B., and Chaban, E.E., Appl. Phys. Lett. 73, 3721 (1998).Google Scholar
7. Tong, Q.Y., Lee, T.H., Werner, P., Gosele, U., Bergmann, R.B., and Werner, J.H., J. Electrochemical Society 144, L111 (1997); Q.Y. Tong, T.H. Lee, L.J. Huang, Y.I. Chao, and U. Gosele, Electron. Lett. 34, 407 (1998).Google Scholar
8. Cioccio, L. Di, Tiec, Y. Le, Letertre, F., Jaussaud, C., and Bruel, M., Electron. Lett 32, 1144 (1996); L. Di Cioccio, F. Letertre, Y. Le Tiec, A.M. Papon, C. Jaussaud, and M. Bruel, Mater. Sci. and Eng. B46, 349 (1997).Google Scholar
9. Levy, M., Osgood, R.M. Jr, Bhalla, A.S., Guo, R., Cross, L.E., Kumar, A., Sankaran, S., and Bakhru, H., Appl. Phys. Lett. 77, 2124 (2000); M. Levy, R.M. Osgood Jr., R. Liu, L.E. Cross, A. Kumar, and H. Bakhru, Appl. Phys. Lett. 73, 2293 (1998).Google Scholar
10. Radojevic, A.M., Levy, M., Kwak, H., and Osgood, R.M. Jr, Appl. Phys. Lett. 75, 2888 (1999); A.M. Radojevic, M. Levy, R.M. Osgood Jr., A. Kumar, H. Bakhru, C. Tian, and C. Evans, Appl. Phys. Lett. 74, 3197 (1999).Google Scholar
11. Levy, M., Osgood, R.M. Jr, Kumar, A., and Bakhru, H., Appl. Phys. Lett. 71, 2617 (1997).Google Scholar
12. Thevuthasan, S., Peden, C.H.F., Engelhard, M.H., Baer, D.R., Herman, G.S., Jiang, W., Liang, Y., and Weber, W.J., Nucl. Instr.Meth. A 420, 81 (1999).Google Scholar