Hostname: page-component-54dcc4c588-9xpg2 Total loading time: 0 Render date: 2025-10-11T09:31:05.528Z Has data issue: false hasContentIssue false

Ion Beam Assisted Texture Evolution during Thin Film Depositionof Metal Nitrides

Published online by Cambridge University Press:  17 March 2011

Bernd Stritzker
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
Jürgen W. Gerlach
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
Stephan Six
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
Bernd Rauschenbach
Affiliation:
Institut für Oberflächenmodifizierung, D-04318 Leipzig, Germany
Get access

Abstract

Ion beam assisted deposition, i.e., the bombardment of thin films with abeam of energetic particles has become a highly developed tool for thepreparation of thin films. This technique provides thin films and coatingswith modified microstructure and properties. In this paper examples arepresented for the modifying of the structure: in-situ modification oftexture during ion beam assisted film growth and ion beam enhancedepitaxy.

The biaxial alignment of titanium nitride films prepared on Si(111) bynitrogen ion beam assisted deposition at room temperature was studied. Thebombardment perpendicular to the surface of the substrate causes an {001}alignment of crystallites. A 55° ion beam incidence angle produces both a{111} orientation relative to the surface and a {100} orientation relativeto the ion beam. This results in a totally fixed orientation of thecrystallites. The texture evolution is explained by the existence of openchanneling directions.

Epitaxial, hexagonal gallium nitride films were grown on c-plane sapphire bylow-energy nitrogen ion beam assisted deposition (≤ 25 eV). The ion energywas chosen to be less than the corrected bulk displacement energy to avoidthe formation of ion-induced point defects in the bulk. The results showthat GaN films with a nearly perfect {0002} texture are formed which havesuperior crystalline quality than films grown without ion irradiation. Themosaicity and the defect density are reduced.

By applying an assisting ion beam during pulsed laser deposition of aluminumnitride on the c-plane of sapphire, epitaxial, hexagonal films could beproduced. The results prove the beneficial influence of the ion beam on thecrystalline quality of the films. An optimum ion energy of 500 eV was foundwhere the medium tilt as well as the medium twist of the crystallites wasminimal.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1. Smidt, F.A., Intern. Mat. Rev. 35, 61 (1990).Google Scholar
2. Greene, J.E., “Low-energyion/surface interactions during crystal growth from the vapor phase: effects on nucleation and growth, defect creation and annihilation, microstructure evolution, and synthesis of metastable phases”, Handbook of Crystal Growth, Vol. 3: Thin Films and Epitaxy, ed. Hurle, D.T.J. (North-Holland, 1993) pp. 641682.Google Scholar
3. Buhl, R., Pulker, H.K. and Moll, E., Thin Solid Films 80, 265 (1981).Google Scholar
4. Kant, R.A. and Sartwell, S.D., J. Vac. Sci. Technol. A8, 861 (1990).Google Scholar
5. Rauschenbach, B. and Gerlach, J.W., Cryst. Res. Technol. 35, 675 (2000).Google Scholar
6. Nakamura, S. and Fasol, G., The blue laser diode (Springer, 1997).Google Scholar
7. Orton, J.W. and Foxon, C.T., Rep. Progr. Phys. 61, 1 (1998).Google Scholar
8. Pearton, S.J., Zolper, J.C., Shul, R.J. and Ren, F., J. Appl. Phys. 86, 1 (1999).Google Scholar
9. Koleske, D.D., Wickenden, A.E., Henry, R.L., Twigg, M.E., Culbertson, J.C. and Gorman, R.J., MRS Internet J. Nitride Semicond. Res. 4S1, G3.70 (1999).Google Scholar
10. Anders, A. and Kühn, M., Rev. Sci. Instr. 69, 1340 (1998).Google Scholar
11. Gerlach, J.W., Schrupp, D., Volz, K., Zeitler, M., Rauschenbach, B. and Anders, A., Nucl. Instr. Meth. B148, 406 (1999).Google Scholar
12. Gerlach, J.W., Schwertberger, R., Schrupp, D., Rauschenbach, B., Neumann, H. and Zeuner, M., Surf. Coat. Technol. 128–129, 286 (2000).Google Scholar
13. Böer, K.W., Survey of Semiconductor Physics, Vol. 1 (Van Nostrand-Reinhold, 1990).Google Scholar
14. Brice, D.K., Tsao, J.Y. and Picraux, S.T., Nucl. Instr. Meth. B44, 89 (1989).Google Scholar
15. Ma, Z.Q. and Kido, Y., Thin Solid Films 359, 288 (2000).Google Scholar
16. Zolper, J.C., Crawford, M. Hagerott, Howard, A.J., Pearton, S.J., Abernathy, C.R., Vartuli, C.B., Yuan, C., Stall, R.A., Ramer, J., Hersee, S.D. and Wilson, R.G., Mat. Res. Soc. Symp. Proc. 395, 801 (1996).Google Scholar
17. Meinschien, J., Behme, G., Falk, F., Stafast, H., Appl. Phys. A 69, 683 (1999).Google Scholar
18. Zhang, W., Vargas, R., Goto, T., Someno, Y, Hirai, T., Appl. Phys. Lett. 64, 1359 (1993).Google Scholar
19. Rille, E., Zarwasch, R., Pulker, H. K., Thin Solid Films 228, 215 (1993).Google Scholar
20. Ebling, D.G., Rattunde, M., Steinke, L., Benz, K.W., Winnacker, A., J. Cryst. Growth 201/202, 411 (1999).Google Scholar
21. Vispute, R. D., Wu, H., Narayan, J., Appl. Phys. Lett. 67, 1549 (1995.Google Scholar
22. Norton, M. G., Kotula, P. G., Carter, C. B., J. Appl. Phys. 70, 2871 (1991).Google Scholar
23. Vispute, R. D., Narayan, J., Wu, H., Jagannadham, K., J. Appl. Phys. 77, 4724 (1995).Google Scholar
24. Six, S., Gerlach, J.W., Rauschenbach, B., Surf. Coat. Technol. (in press).Google Scholar