Hostname: page-component-54dcc4c588-smtgx Total loading time: 0 Render date: 2025-10-09T11:26:48.179Z Has data issue: false hasContentIssue false

Inverse Ostwald Ripening and Self-Organization of Nanoclustersdue to Ion Irradiation

Published online by Cambridge University Press:  17 March 2011

K.-H. Heinig
Affiliation:
FZ Rossendorf, Institute of Ion Beam Physics & Materials Research, Dresden, GERMANY
B. Schmidt
Affiliation:
FZ Rossendorf, Institute of Ion Beam Physics & Materials Research, Dresden, GERMANY
M. Strobel
Affiliation:
CNR-IMETEM, Catania, ITALY
H. Bernas
Affiliation:
CSNSM, CNRS-IN2P3, Orsay, FRANCE
Get access

Abstract

Under ion irradiation collisional mixing competes with phase separation ifthe irradiated solid consists of immiscible components. If a component is achemical compound, there is another competition between the collisionalforced chemical dissociation of the compound and its thermally activatedre-formation. Especially at interfaces between immiscible components,irradiation processes far from thermodynamical equilibrium may lead to newphenomena. If the formation of nanoclusters (NCs) occurs during ionimplantation, the phase separation caused by ion implantation inducedsupersaturation can be superimposed by phenomena caused by collisionalmixing. In this contribution it will be studied how collisional mixingduring high-fluence ion implantation affects NC synthesis and how ionirradiation through a layer of NCs modifies their size and sizedistribution. Inverse Ostwald ripening of NCs will be predictedtheoretically and by kinetic lattice Monte-Carlo simulations. Themathematical treatment of the competition between irradiation-induceddetachment of atoms from clusters and their thermally activated diffusionleads to a Gibbs-Thomson relation with modified parameters. The predictionshave been confirmed by experimental studies of the evolution of Au NCs in SiO2 irradiated by MeV ions. The unusual behavior results froman effective negative capillary length, which will be shown to be the reasonfor inverse Ostwald ripening. Another new phenomenon to be addressed isself-organization of NCs in a d-layer parallel to the Si/SiO2interface. Such d-layers were found when the damage level at the interfacewas of the order of 1-3 dpa. It will be discussed that the origin of thed-layer of NCs can be assigned to two different mechanisms: (i) The negativeinterface energy due to collisional mixing gives rise to the formation oftiny clusters of substrate material in front of the interface, whichpromotes heteronucleation of the implanted impurities. (ii) Collisionalmixing in the SiO2produces diffusing oxygen, which may beconsumed by the Si/SiO2 interface. A thin layer parallel to theinterface becomes denuded of diffusing oxygen, which results in a strongpile up of Si excess. This Si excess promotes heteronucleation too.Independent of the dominating mechanism of self-organization of a d-layer ofNCs, its location in SiO2 close to the SiO2/Siinterface makes it interesting for non-volatile memory application.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

[1] Inoue, Y., Tanaka, A., Fujii, M., Hayashi, S., and Yamamoto, K., J. Appl. Phys. 86, 3199 (1999).Google Scholar
[2] Chen, W., Ahmed, H., and Nakazoto, K., Appl. Phys. Lett. 66, 3383 (1995).Google Scholar
[3] Rebohle, L., Borany, J. von, Fröb, H., and Skorupa, W., Appl. Phys. B71, 131 (2000).Google Scholar
[4] Okamoto, S., Kanemitsu, Y., Min, K.S., and Atwater, H.A., Appl. Phys. Lett. 73, 1829 (1998).Google Scholar
[5] Reiss, S. and Heinig, K.H., Nucl. Instr. & Meth. B 84, 229 (1994).Google Scholar
[6] Reiss, S. and Heinig, K.H., Nucl. Instr, & Meth. B 102, 256 (1995).Google Scholar
[7] Reiss, S. and Heinig, K.H., Nucl. Instr. & Meth. B 112, 223 (1996).Google Scholar
[8] Maksimov, L.A., Ryazanov, A.I., Heinig, K.-H., and Reiss, S., Phys. Lett. A213, 73 (1996).Google Scholar
[9] Borodin, V.A., Heinig, K.-H. and Reiss, S., Phys. Rev. B56, 5332 (1997).Google Scholar
[10] Heinig, K.-H. and Strobel, M., Nucl. Instr. & Meth.. in press.Google Scholar
[11] Markwitz, A., Groetzschel, R., Heinig, K.H., Rebohle, L., Skorupa, W., Nucl. Instr. & Meth. B 152, 319 (1999).Google Scholar
[12] Borany, J. von, Groetzschel, R., Heinig, K.-H., Markwitz, A., Matz, W., Schmidt, B., and Skorupa, W., Appl. Phys. Lett. 71, 3215 (1997).Google Scholar
[13] Borany, J.von, Groetzschel, R., Heinig, K.-H., Markwitz, A., Schmidt, B., Skorupa, W., and Thees, H.-J., Solid State Electr. 43, 1159 (1999).Google Scholar
[14] Borany, J.von, Heinig, K.-H., Groetzschel, R., Klimenkov, M., Strobel, M., Stegemann, B. K.H., and Thees, H.-J., Microel. Eng. 48, 231 (1999).Google Scholar
[15] Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., and Crabbe, E., Appl. Phys. Lett. 68, 1377 (1996).Google Scholar
[16] Strobel, M., Heinig, K.-H., Moeller, W., Meldrum, A., Zhou, D.S., White, C.W., Zuhr, R.A., Nucl. Instr. Meth., B 147, 343 (1999).Google Scholar
[17] Rizza, G., Strobel, M., Heinig, K.-H. and Bernas, H., Nucl. Instr.& Meth., in press.Google Scholar
[18] Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids 19, 35 (1961).Google Scholar
[19] Enrique, R. and Bellon, P., Phys. Rev. Lett., 84, 2885 (2000).Google Scholar
[20] Heinig, K.-H., to be published.Google Scholar
[21] Ziegler, J.F., Biersack, J.P., and Littmark, U., The Stopping and Range of Ions in Solids, Pergamon Press, New York, 1985.Google Scholar
[22] Sigmund, P. and Gras-Marti, A., Nucl. Instr. & Meth. 182/183, 25 (1981); P. Sigmund, in Sputtering by Particle Bombardment I, R. Behrisch, ed., Springer, Berlin, 1981.Google Scholar
[23] Reiss, S., Ruault, M.O., Clayton, J., Kaitasov, O., Heinig, K.-H., and Bernas, H., Mat. Res. Soc. Symp. Proc. 354, 183 (1995).Google Scholar
[24] Strobel, M., Reiss, S., Heinig, K.-H., and Moeller, W., Rad. Eff. Def. Sol. 141, 99 (1997).Google Scholar
[25] Strobel, M., Heinig, K.-H., Moeller, W., Nucl. Instr. & Methods, in press.Google Scholar
[26] Strobel, M., Heinig, K.-H., Moeller, W., MRS2000 Fall Meeting, Proc. Symp. O.Google Scholar
[27] Schmidt, B., Heinig, K.-H., and Muecklich, A., MRS2000 Fall Meeting, Proc. Symp. O.Google Scholar
[28] Spiga, S., Ferrari, S., Fanculli, M., Schmidt, B., Heinig, K.-H., Groetzschel, R., Muecklich, A., and Pavia, G., MRS2000 Fall Meeting, Proc. Symp. O.Google Scholar
[29] Borany, J. von, privat communication.Google Scholar
[30] Heinig, K.-H., Schmidt, B., Markwitz, A., Groetzschel, R., Strobel, M., and Oswald, S., Nucl. Instr. & Meth. B 148, 969 (1999).Google Scholar