Hostname: page-component-54dcc4c588-m259h Total loading time: 0 Render date: 2025-10-13T18:08:27.014Z Has data issue: false hasContentIssue false

Growth and Characterization of Erbium Silicides Synthesized byMetal Vapor Vacuum Arc Ion Implantation

Published online by Cambridge University Press:  17 March 2011

X. W. Zhang
Affiliation:
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
W. Y. Cheung
Affiliation:
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
S. P. Wong
Affiliation:
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
Get access

Abstract

Erbium atoms were implanted into p-type Si (111) wafers at an extractionvoltage of 60 kV to doses ranging from 5×1016 to 2×1017 cm−2 using a metal vapour vacuum arc (MEVVA)ion source. The implantation was performed with beam current densities from3 to 26 µA/cm2 corresponding to substrate temperatures rangingfrom 85 to 245°C. The characterization of the as-implanted and annealedsamples was performed using Rutherford backscattering spectrometry, atomicforce microscopy and x-ray diffraction. To determine the sputtering yield,masked implantation experiments were performed so that the thickness of thesputtered layer at different substrate temperatures can be obtained directlyby an α-step surface profiler. The results showed that ErSi2-xwasdirectly formed by MEVVA implantation when the substrate temperature washigher than about 160°C. The effects of the implant dose and the beamcurrent density on the retained dose, the sputtering yield and the surfacemorphology of the implanted samples were also studied.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1. Duboz, J. Y., Badoz, P. A., d'Avitaya, F. Arnaud and Chroboczek, J. A., Appl. Phys. Lett. 55, 84 (1989).Google Scholar
2. Grimaldi, M. G., Yan, X. S., Scerra, G., Ravesi, S. and Spinella, C., Appl. Phys. Lett. 67, 974 (1995).Google Scholar
3. Kaltsas, G., Travlos, A., Salamouras, N., Nassiopoulos, A. G., Revva, P. and Traverse, A., Thin Solid Films 275, 87 (1996).Google Scholar
4. Gunnella, R., Veuillen, J. Y., Tan, T. A. Nguyen and Flank, A. M., Phys. Rev. B57, 4154 (1998).Google Scholar
5. Wu, M. F., Vantomme, A., Pattyn, H. and Langouche, G., Appl. Phys. Lett. 67, 3886 (1995).Google Scholar
6. Hogg, S. M., Vantomme, A., Wu, M. F. and Langouche, G., Microele. Engin. 50, 211 (2000).Google Scholar
7. Brown, I.G., Gavin, J. E. and MacGill, R. A., Appl. Phys. Lett. 47, 358 (1985).Google Scholar
8. Peng, Q., Wong, S.P., Wilson, I.H., Wang, N., Fung, K.K., Thin Solid Films 270, 573 (1995).Google Scholar
9. Liu, B. X., Gao, K. Y. and Zhu, H. N., J. Vac. Sci. Technol. B17, 2277 (1999).Google Scholar
10. Brown, I. G. and Godechot, X., IEEE Trans. Plasma Sci. 19, 713 (1991).Google Scholar
11. Thompson, R. D. and Tu, K. N., Thin Solid Films 93, 265 (1982).Google Scholar
12. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Publishers, New York, 1985).Google Scholar
13. Lee, H. Y. and Chang, H. Y., Philos. Mag. B67, 97 (1993).Google Scholar
14. Ommen, A. H. van, Ottenheim, J. J. M., Theunissen, A. M. L. and Mouwen, A. G., Appl. Phys. Lett. 53, 669 (1988).Google Scholar