Hostname: page-component-54dcc4c588-rz4zl Total loading time: 0 Render date: 2025-10-13T13:13:02.398Z Has data issue: false hasContentIssue false

Gold Nanoclusters Formed by Ion-Implantation into Bi2TeO5

Published online by Cambridge University Press:  17 March 2011

A. Kling
Affiliation:
Instituto Tecnológico e Nuclear, 2686-953 Sacavém, Portugal Centro de Física Nuclear da Universidade de Lisboa, 1649-003 Lisboa, Portugal
M.F. da Silva
Affiliation:
Instituto Tecnológico e Nuclear, 2686-953 Sacavém, Portugal Centro de Física Nuclear da Universidade de Lisboa, 1649-003 Lisboa, Portugal
J.C. Soares
Affiliation:
Instituto Tecnológico e Nuclear, 2686-953 Sacavém, Portugal Centro de Física Nuclear da Universidade de Lisboa, 1649-003 Lisboa, Portugal
P.F.P. Fichtner
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
L. Amaral
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
F.C. Zawislak
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
I. Földvári
Affiliation:
Research Laboratory for Crystal Physics, Hungarian Academy of Sciences, 1525 Budapest 114, Hungary
Á. Péter
Affiliation:
Research Laboratory for Crystal Physics, Hungarian Academy of Sciences, 1525 Budapest 114, Hungary
Get access

Abstract

Single crystalline samples of bismuth tellurite (Bi2TeO5) were implanted with 800 keV Au+ions to a fluence of 1×1016 cm-2 atroom temperature. The samples were subjected to heat treatments in twodifferent ambients (air and high vacuum) at temperatures ranging from 400 -700°C in a conventional furnace. Strong absorption maxima in the range from600 - 630 nm in the optical absorption spectra and an intense blue-greencolor in the samples were observed for annealings performed in air attemperatures between 500 and 700°C indicating the formation of goldcolloids. The average radii of the Au clusters formed were estimated to bein the range of 3-4 nm. Samples annealed under vacuum showed distinctchanges in color for different annealing temperatures. Studies using theRBS/channeling technique indicate that no full recrystallization of thesamples was achieved under both annealing regimes although heat treatmentunder vacuum provides a significantly better lattice recovery than for airambient.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1.Mercurio, D., Farissi, M. el, Frit, B., Goursat, P., Mat. Chem. Phys. 9, 467 (1983).Google Scholar
2.Földvári, I., Péter, Á., Voszka, R., Kappers, L.A., J. Cryst. Growth 100, 75 (1990).Google Scholar
3.Földvári, I., Liu, H., Powell, R.C., Péter, Á., J. Appl. Phys. 71, 5466 (1992).Google Scholar
4.Földvári, I., Kappers, L.A., R,H, Bartram, Péter, Á., Opt. Mater. 10, 47 (1998).Google Scholar
5.Shang, D.Y., Matsuno, H., Saito, Y., Suganomata, S., J. Appl. Phys. 80, 406 (1996).Google Scholar
6.Takahiro, K., Kunimatsu, A., Nagata, S., Yamaguchi, S., Yamamoto, S., Aoki, Y., Naramoto, H., Nucl. Instr. Meth. B152, 314 (1999).Google Scholar
7.The latest version can be found at: http://www.research.ibm.com/ionbeams/.Google Scholar
8.Kling, A., Soares, J.C. and Silva, M.F. da, Nucl. Instr. Meth. B141, 436 (1998).Google Scholar
9.Doyle, W.T., Phys. Rev. 111, 1067 (1958).Google Scholar
10.Doremus, R.H., J. Appl. Phys. 37, 2775 (1966).Google Scholar
11.Saito, Y., Shang, D.Y., Suganomata, S., Ionics 20, 35 (1994).Google Scholar