Hostname: page-component-54dcc4c588-9xpg2 Total loading time: 0 Render date: 2025-10-11T08:09:22.971Z Has data issue: false hasContentIssue false

The First Molecular Wheel: A TheoreticalInvestigation

Published online by Cambridge University Press:  14 January 2011

Gustavo Brunetto
Affiliation:
Applied Physics Department, State University of Campinas, 13083-859, Campinas, São Paulo, Brazil.
Fernando Sato
Affiliation:
Physics Department, Federal University of Juiz de Fora, Juiz de Fora, 36036-330, Minas Gerais, Brazil.
Xavier Bouju
Affiliation:
Nanosciences Group, Centre d’élaboration de materiaux et d’études structurales, CEMES-CNRS, PO Box 94347, F-31055 Toulouse Cedex 4, France.
Douglas S. Galvao
Affiliation:
Applied Physics Department, State University of Campinas, 13083-859, Campinas, São Paulo, Brazil.
Get access

Abstract

Recently, the first molecular nanowheel was synthesized and characterizedfrom Scanning Tunneling Microscope (STM) experiments. It was demonstratedthat a specifically designed hydrocarbon molecule (C44H24) could roll on a copper substrate along the[110] surface direction. In this work we report a preliminary theoreticalanalysis of the isolated molecule and of its rolling processes on differentCu surfaces. We have used ab initio and classical moleculardynamics methods. The simulations showed that the rolling mechanism is onlypossible for the [110] surface. In this case, the spatial separation amongrows of copper atoms is enough to ‘trap’ the molecule and to create thenecessary torque to roll it. Other surface orientations ([111] and [100])are too smooth and cannot provide the necessary torque for the rollingprocess.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

[1] Grill, L., Rieder, K.-H., Moresco, F., Rapenne, G., Stojkovic, S., Bouju, X. and Joachim, C., Nature Nanotechnology 2, 95 (2007).Google Scholar
[2] Rappé, A. K., Casewit, C. J., Colwell, K.S., Goddard, W. A. III, Skiff, W. M., J. Am. Chem. Soc. 114, 10024 (1992).Google Scholar
[3] Materials Studio 4.2-A package for modeling and simulation for studying chemicals and materials. http://www.accelrys.com.Google Scholar
[4] Otero, R., Hummelink, F., Sato, F., Legoas, S. B., Thostrup, P., Laegsgaard, E., Stensgaard, I., Galvão, D. S., and Besenbacher, F., Nature Materials 3, 779 (2004).Google Scholar
[5] Orca - An ab initio, DFT and semiempirical SCF-MO package is avaiable from Frank Neese home page. http://www.thch.uni-bonn.de/tc/orca.Google Scholar
[6] Shirai, Y., Morin, J.-F., Sasaki, T., Guerrero, J. M. and Tour, J. M., Chem. Soc. Rev. 35, 1043 (2006).Google Scholar
[7] Schunack, M., Rosei, F. and Naitoh, Y., J. Chem. Phys. 117, 6259 (2002).Google Scholar
[8] Gimzewski, J. K., Joachim, C., Schlittler, R. R., Langlais, V., Tang, H. and Johannsen, I., Science 281, 531 (1998).Google Scholar
[9] Chiaravalloti, F., Gross, L., Rieder, K.-H., Stojkovic, S.M., Gourdon, A., Joachim, C. and Moresco, F., Nature Mater. 6, 30 (2007).Google Scholar
[10] Zambelli, T., Goudeau, S., Lagoute, J., Gourdon, A., Bouju, X. and Gauthier, S., ChemPhysChem 7, 1917 (2006).Google Scholar
[11] Anderson, A. B., Int. J. Quantum Chem. 49, 581 (1994).Google Scholar
[12] Ample, F., Joachim, C., Surf. Sci. 600, 3243 (2006).Google Scholar
[13] Bouju, X., Joachim, C., Girard, C., Tang, H., Phys. Rev. B 63, 085415 (2001).Google Scholar
[14] Villagomez, C. J., Sasaki, T., Tour, J. M., Grill, L., J. Am. Chem. Soc., in press (2011).Google Scholar
[15] Bartels, L., Meyer, G., and Rieder, K.-H., Phys. Rev. Lett. 79, 697 (1997).Google Scholar
[16] Bouju, X., unpublished.Google Scholar