Hostname: page-component-54dcc4c588-rz4zl Total loading time: 0 Render date: 2025-10-10T15:56:02.020Z Has data issue: false hasContentIssue false

Explosive Crystallization in A-Ge Films Irradiated withMicrosecond Laser Pulses

Published online by Cambridge University Press:  25 February 2011

R.K. Sharma
Affiliation:
Department of Physics and Astro Physics, University of Delhi Delhi - 110007, India
S.K. Bansal
Affiliation:
Department of Physics and Astro Physics, University of Delhi Delhi - 110007, India
Get access

Abstract

Explosive crystallisation has been observed in deposited a-Ge filmsirradiated with pulsed Nd-glass laser beam of 400 micro second duration.Transmission electron microscopic examination of the irradiated film shows apolycrystalline region surrounded by radial dendrites of ~ 8-10 ;Cm size.Analysis of the results is consistent with the duplex-melting model of theexplosive crystallisation mechanism. Heat released during the amorphous tocrystalline transformation of a localised region abruptly crystallises thesurrounding area resulting in dendritic growth. The crystallisation isself-sustaining untill the temperature ahead of liquid/amorphous interfacedrops below 775 K. These results are consistent with earlier study ofexplosive crystallisation in unsupported a-Ge films and further confirm thatthe heat loss to the underlying substrate governs the dynamics of thecrystallisation process.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1. Fan, J.C.C., Zeiger, H.J., Gale, R.P., and Chapman, R.L. (1980) Appl. Phys. Lett. 36, 158.Google Scholar
2. Zeiger, H.J., Fan, J.C.C., Palm, B.J., Gale, R.P., and Chapman, R.L. (1980) in "Laser and Electron Beam Processing of Materials" (White, C.W. and Peercy, P.S. eds.), p.234, Academic Press, New York.Google Scholar
3. Gold, R.B., Gibbons, J.F., Magee, T.J., J., Peng, R., Ormand, Deline, V.R., and Evans, C.A. Jr., (1980) in “Laser and Electron Beam Processing of Materials (White, C.W. and Peercy, P.S. eds.), p.221. Academic Press, New York.Google Scholar
4. Koba, R. and Wickersham, C.E. (1982) Appl. Phys. Lett. 40(8), 672.Google Scholar
5. Gilmer, G.H. and Leamy, H.J. (1980) in "Laser and Electron Beam Processing of Materials (White, C.W. and Peercy, P.S. eds.) p.227, Academic Press, New York.Google Scholar
6. Lemons, R.A. and Bösch, M.A. (1981), Appl. Phys. Lett 39, 343.Google Scholar
7. Narayan, J. and White, C.W. (1984), Appl. Phys. Lett 44(1), 35.Google Scholar
8. Cullis, A.G., Webber, H.C. and Chew, N.G. (1980), Appl. Phys. Lett. 36, 547.Google Scholar
9. Leamy, H.J., Brown, W.L., Celler, C.K., Foti G., Gilmer, G.H. and Fan, J.C.C. (1981), Appl. Phys. Lett. 38, 137.Google Scholar
10. Sharma, R.K., Bansal, S.K., Nath R., Mehra, R.M., Bahadur K., Mall, R.P., Choudhary, K.L. and Garg, C.L. (1984) J. Appl. Phys. 55(2), 387.Google Scholar
11. Csepregi, L., Kullen, R.P., Mayer, J.W. and Sigman, T.W. (1977), Solid state Commn. 21, 1019.Google Scholar
12. Chopra, K.L., Randhawa, H.S. and Malhotra, L.K. (1977), Thin Solid Films 47, 203.Google Scholar
13. Chen, H.S. and Turnbull, D. (1969), J. Appl. Phys. 40, 4214.Google Scholar
14. Bagley, B.G. and Chen, H.S. (1979), AIP Conf. Proc. 50, 97.Google Scholar
15. Spaepen, F. and Turnbull, D. (1979) AIP Conf. Proc. 50, 73.Google Scholar