Hostname: page-component-54dcc4c588-2bdfx Total loading time: 0 Render date: 2025-10-12T15:26:13.460Z Has data issue: false hasContentIssue false

Low-Energy, Pulsed-Laser Irradiation of Amorphous Silicon:Melting and Resolidification at Two Fronts

Published online by Cambridge University Press:  25 February 2011

W. Sinke
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
F.W. Saris
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
Get access

Abstract

After low-energy pulsed-laser irradiation of Cu-implanted silicon, adouble-peak structure is observed in the Cu concentration profile, whichresults from the occurrence of two melts. From Cu surface segregation wecalculate the depth of the surface melt. Cu segregation near the position ofthe amorphous-crystalline interface gives evidence for a self-propagatingmelt, moving from the surface region towards the crystalline substrate.Measurements of As-redistribution and of sheet resistance as a function oflaser energy density in As-implanted silicon are consistent with thecrystallization model which is derived from the effects as observed inCu-implanted silicon.

The results imply a large difference in melting temperature, heatconductivity and heat of melting between amorphous silicon and crystallinesilicon.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1. Olson, G.L., Roth, J.A., Hess, L.D. and Narayan, J., Proc.of the US-Japan Seminar on S.P.E. and Interface Kinetics (1983) and references therein.Google Scholar
2. Baeri, P., Foti, G., Poate, J.M. and Cullis, A.G., Phys.Rev.Lett. 45, 2036 (1980).Google Scholar
3. Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A.G. and Chew, N.G., Phys.Rev.Lett. 52, 2360 (1984).Google Scholar
4. Webber, H.C., Cullis, A.G. and Chew, N.G., Appl.Phys.Lett. 43, 669 (1983).Google Scholar
5. Narayan, J., White, C.W., Holland, O.W. and Aziz, M.J., J.Appl.Phys. 56, 1821 (1984).Google Scholar
6. Lowndes, D.H., Wood, R.F. and Narayan, J., Phys.Rev.Lett. 52, 561 (1984).Google Scholar
7. Wood, R.F., Lowndes, D.H. and Narayan, J., Appl.Phys.Lett. 44, 770 (1984).Google Scholar
8. Narayan, J. and White, C.W., Appl.Phys.Lett. 44, 35 (1984).Google Scholar
9. Baeri, P., Campisano, S.U., Foti, G. and Rimini, E., Phys.Rev.Lett. 41, 1246 (1978).Google Scholar
10. Miyao, M. et al. , J.Appl.Phys. 51, 4139 (1980).Google Scholar
11. Baeri, P. and Campisano, S.U. in Laser Annealing of Semiconductors - ed. by Poate, J.M. and Mayer, J.W., Academic Press 1982, p.500.Google Scholar
12. Chu, W.K., Mayer, J.W. and Nicolet, M.A., Backscattering Spectrometry, Academic Press, New York 1978.Google Scholar
13. See ref.11, p.75.Google Scholar
14. Bagley, B.G. and Chen, H.S. in Laser-Solid Interactions and Laser Processing -ed. by Ferris, S.D. et al. , A.I.P.Conf.Proceedings no.50 (1979) p.97.Google Scholar
15. Spaepen, F. and Turnbull, D., ibid 50, 73 (1979).Google Scholar
16. See ref.11, p.32.Google Scholar