Hostname: page-component-54dcc4c588-xh45t Total loading time: 0 Render date: 2025-10-12T15:31:35.184Z Has data issue: false hasContentIssue false

Implanted Impurity Incorporation and Segregation PhenomenaInduced by PEBA in Silicon

Published online by Cambridge University Press:  25 February 2011

G. Chaussemy
Affiliation:
Laboratoire de Physique de la Matière (LA CNRS n° 358), Institut National des Sciences Appliquées de Lyon, 20 Avenue Albert Einstein 69621 Villeurbanne Cédex France
D. Barbier
Affiliation:
Laboratoire de Physique de la Matière (LA CNRS n° 358), Institut National des Sciences Appliquées de Lyon, 20 Avenue Albert Einstein 69621 Villeurbanne Cédex France
A. Laugier
Affiliation:
Laboratoire de Physique de la Matière (LA CNRS n° 358), Institut National des Sciences Appliquées de Lyon, 20 Avenue Albert Einstein 69621 Villeurbanne Cédex France
Get access

Abstract

In this work, the PEBA induced thermal effects have been varied to study thediffusion of usual implanted impurities (P, As, Sb, In) and segregationphenomena in (100) and (111) silicon. The mean melt-front velocity has beenadjusted between 1 and 4 m/s by modifying both the beam fluence and thesample starting temperature. A model for dopant redistribution has beendevelopped, using a mean diffusion coefficient D and solving the onedimensional Fick's equation. Segregation and dopant evaporation areconsidered and introduced as limit conditions at the liquid-solid interfaceand at the wafer surface respectively. The impurity redistribution has beenexperimentally studied by SIMS profiling ; so that interfacial segregationcoefificient Ki may be deduced from comparison between experimental andcomputed profiles.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

(1) WOOD, R.F., KIRKPATRICK, J.R., GILES, G.E.. Phys.Rev.B 23, 10, p.5555 (1981)Google Scholar
(2) BAERI, P., FOTI, G., POATE, J.M., CAMPISANO, S.U., REMINI, E., CULLIS, A.G.. Laser and Electron Beam Solid Interactions and Transient Thermal Processing, Gibbons, J.F., Hess, L.D., Sigmon, T.W. eds (Nort Holland, New York, 1981) p.67Google Scholar
(3) CHEMISKY, G., BARBIER, D., LAUGIER, A.. Journ. of Crystal Growth 66, p.215 (1984)Google Scholar
(4) JACKSON, K.A., GILMER, G.H., LEAMY, H.J.. Laser and Electron Beam Processing of Materials, White, C.W., Peircy, P.S. eds (Academic Press, New York 1980) p.104Google Scholar
(5) MOREHEAD, F.. Laser and Electron Beam Processing of Materials, White, C.W., Peircy, P.S. eds (Academic Press New York, 1980) 143Google Scholar
(6) LAUGIER, A., BARBIER, D., CHEMISKY, G.. Proceedings of the 4th E.C. Photovoltaic Solar Energy Conference, D. Reidel Publishing Company, p.1007 (1982)Google Scholar
(7) WHITE, C.W., WILSON, S.R., APPLETON, B.R., YOUNG, F.W.. J.A.P. 51, 1, p.736 (1980)Google Scholar
(8) KODERA, H.. Jps J.A.P. 2, p.212 (1965)Google Scholar
(9) GILMER, H.. Laser Solid Interactions and Transient Thermal Processing of Materials, Narayan, J., Brown, W.L., Lemons, R.A. eds (North Holland, New York, 1983) p.249 Google Scholar