Hostname: page-component-54dcc4c588-scsgl Total loading time: 0 Render date: 2025-10-14T01:48:52.981Z Has data issue: false hasContentIssue false

Dynamical X-ray diffraction analysis of Solid Phase Epitaxygrowth of Si1-yCy heterostructures

Published online by Cambridge University Press:  17 March 2011

J. Rodriguez-Viejo
Affiliation:
Grup de Fisica de Materials I. Dep.Fisica. Universidad Autonoma de Barcelona. 08193 Bellatera, Spain
Zakia el-Felk
Affiliation:
Grup de Fisica de Materials I. Dep.Fisica. Universidad Autonoma de Barcelona. 08193 Bellatera, Spain
Get access

Abstract

The strain and damage produced on Si substrates by high-dose ionimplantation of Si and C is investigated after thermal treatments by doubleand triple crystal X-ray diffraction, high ressolution transmission electronmicroscopy (HRTEM) and Secondary Ion Mass Spectrometry (SIMS). Siimplantation (180 keV, 5×1015 Si at cm−2) at liquidnitrogen temperature forms a buried amorphous layer. Annealing attemperatures close to 650°C results in epitaxial films with significantdefect recovery. X-ray rocking curves show the existence of interferencefringes on the left hand side of the 004 Si peak indicating the presence oftensile strained Si layers due to the generation of Si interstitials duringthe implantation process. C implantation, at 60 keV, 7×1015 cm−2 and 450°C, in the preamorphized Si wafers results in thegrowth of Si1-yCy epitaxial films with a low amount ofsubstitutional carbon (y≍ 0.1%). Rapid thermal annealing at 750°C results inhighly defective epitaxial films with a maximum carbon content close to0.4%.The high density of defects is responsible for the partial strainrelaxation observed in those layers. The amount of substitutional Si alsodecreases drastically with increasing temperature. Profile fitting ofrocking curves using dynamical X-ray theory is used to estimate the Cconcentration and the strain and disorder profiles of theheterostructures.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1. Senz, S., Plobl, A., Gösele, U., Zerlauth, S., Stangl, J., Bauer, G., Appl. Phys. A 67, 147150 (1998).Google Scholar
2. Mitchell, T.O., Hoyt, J.L., Gibbons, J.F., Appl. Phys. Lett. 71, 1688–1670 (1997).Google Scholar
3. Strane, J.W., Lee, S.R., Stein, H.J., Picraux, S.T., Katanabe, J.K., Mayer, J.W., J. Appl. Phys. 79, 637646 (1996).Google Scholar
4. Isomae, S., Ishiba, T., Ando, T., Tmura, M., J. Appl. Phys. 74, 38153820 (1993).Google Scholar
5. Millita, S., Servidori, M., J. Appl. Phys. 79, 82798284 (1996).Google Scholar
6. Wie, C.R., Tombrello, T.A., Vreeland, T., J. Appl. Phys. 59, 37433746 (1986).Google Scholar
7. Kelires, P.C., Phys. Rev. B 55, 87858790 (1997).Google Scholar
8. Fewster, P.F., J. Appl. Cryst. 25, 714723 (1992).Google Scholar
9. Tersoff, J., Phys. Rev. Lett. 64, 17571760 (1990).Google Scholar