Hostname: page-component-54dcc4c588-scsgl Total loading time: 0 Render date: 2025-10-08T21:11:50.201Z Has data issue: false hasContentIssue false

Buried Oxide Precipitates In A Si Wafer Due to He IONImplantation and High-Temperature Oxidation

Published online by Cambridge University Press:  17 March 2011

Sadao Nakashima
Affiliation:
NTT Telecommunications Energy Laboratories, 3-1, Morinosato Wakamiya, Atsugi, 243-0198, Japan
Jyoji Nakata
Affiliation:
Kanagawa University Faculty of Science, 2946, Tsuchiya, Hiratsuka, 259-1293, Japan
Junzou Hayashi
Affiliation:
NTT Basic Research Laboratories, 3-1, Morinosato Wakamiya, Atsugi, 243-0198, Japan
Kazuo Imai
Affiliation:
NTT Telecommunications Energy Laboratories, 3-1, Morinosato Wakamiya, Atsugi, 243-0198, Japan
Get access

Abstract

A new method of producing a buried oxide is proposed. It involves implantinga silicon wafer with helium rather than oxygen ions and then subjecting itto high- temperature oxidation. The voids formed by helium ion implantationand subsequent annealing enhance the diffusion of oxygen atoms into thesilicon. The oxygen atoms cause thermal oxide to grow at the void/siliconinterface and transform the voids into buried oxide precipitates. Augerelectron spectroscopy revealed that the total number of oxygen atoms in theprecipitates was 9.3 × 1016 cm−2 and that the peakvalue of oxygen atom concentration in the wafer was approximately 25%.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1. Omura, Y., Nakashima, S. and Izumi, K., IEICE Trans. Electron. E75–C, 1491 (1992).Google Scholar
2. Ohno, T., Shimaya, M., Izumi, K. and Shiono, N., IEEE Trans. Circuits Devices 3, 21 (1986).Google Scholar
3. Izumi, K., Doken, M. and Ariyoshi, H., Electron. Lett. 14, 593 (1978).Google Scholar
4. Nakashima, S. and Izumi, K., J. Mater. Res. 5, 1918 (1990).Google Scholar
5. Veen, A. V., Griffioen, C. C. and Evans, J. H., Helium-Induced Porous Layer Formation in Silicon, Journal of Materials Research 107, 449 (1988).Google Scholar
6. Raineri, V., Fallica, P. G., Percolla, G., Battaglia, A., Barbagallo, M. and Campisano, S. U., J. Appl. Phys. 78, 3727 (1995).Google Scholar
7. Raineri, V., Battaglia, A. and Rimini, E., Nucl. Instrum. Meth. B96, 249 (1995).Google Scholar
8.Calculated using the stopping and range of ions in matter (SRIM) 96.Google Scholar
9. Nakashima, S., Katayama, T., Miyamura, Y., Matsuzaki, A., Kataoka, M., Ebi, D., Imai, M., Izumi, K. and Ohwada, N., J. Electrochem. Soc. 143, 244 (1996).Google Scholar