Hostname: page-component-cb9f654ff-9b74x Total loading time: 0 Render date: 2025-09-08T22:50:57.484Z Has data issue: false hasContentIssue false

Zirconolite CaZrTi2O7 from the Kovdor phoscorites and carbonatites, Kola Alkaline Province: composition, recrystallisation and thermal expansion

Published online by Cambridge University Press:  14 January 2025

Ruiqi Chen
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment, St. Petersburg, Russia Université de Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, Lille, France
Anatoly N. Zaitsev
Affiliation:
Department of Mineralogy, St. Petersburg State University, University Embankment, St. Petersburg, Russia The Centre for Russian and Central EurAsian Mineral Studies (CERCAMS), The Natural History Museum, London, UK
Oleg I. Siidra*
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment, St. Petersburg, Russia Kola Science Center, Russian Academy of Sciences, Apatity, Russia;
John Spratt
Affiliation:
Imaging and Analysis Centre, The Natural History Museum, London, UK
Alla V. Dolgopolova
Affiliation:
The Centre for Russian and Central EurAsian Mineral Studies (CERCAMS), The Natural History Museum, London, UK
*
Corresponding author: Oleg Siidra; Email: o.siidra@spbu.ru

Abstract

This investigation investigates geologically old, ca. 370 Ma, metamict zirconolite from the Kovdor phoscorites and carbonatites in the Kola Alkaline Province. Mineral composition, crystallisation behaviour, and thermal expansion of the recrystallised samples were analysed using electron microprobe analysis, Raman spectroscopy, and in situ high-temperature powder X-ray diffraction (HTPXRD). The zirconolite crystals investigated are different in their morphology, internal texture, composition, alteration degree, and can be divided into four distinct groups. The zirconolite is a high Nb and Fe3+ variety (10.8–24.1 wt.% Nb2O5 and 7.9–9.0 wt.% Fe2O3), it is enriched in Th (up to 8.7 wt.% ThO2), Ta (up to 5.3 wt.% Ta2O5) and rare earth elements (up to 5.0 wt.% REE2O3). Raman spectroscopy confirmed that metamict zirconolite is anhydrous.

The recrystallisation process of the metamict zirconolite is complex, as detected by HTPXRD. A fluorite-type phase starts to crystallise at 420°C. The formation of a pyrochlore phase can be identified at 750°C. The major phases detected in the sample after the recrystallisation are: zirconolite-3T (53 wt.%), srilankite (25 wt.%), pyrochlore (15 wt.%), baddeleyite (5 wt.%) and zircon (3 wt.%). The average coefficients of thermal expansion (CTE) values in the temperature range 25–1200°C are as follows: ${{\bar \alpha }}$a = ${{\bar \alpha }}$b = ${{\bar \alpha }}$11 = ${{\bar \alpha }}$22 = 8.95·10–6 deg–1. Similarly, the thermal expansion along the c-axis yields a similar value: ${{\bar \alpha }}$a = ${{\bar \alpha }}$b = 8.93·10–6 deg–1, indicating an almost isotropic thermal expansion of zirconolite-3T. The lower CTE value compared to a pure synthetic zirconolite observed for zirconolite-3T might be attributed to the complex chemistry and polyphase nature of the material investigated.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Irina O. Galuskina

References

Amelin, Y. and Zaitsev, A.N. (2002) Precise geochronology of phoscorites and carbonatites: The critical role of U-series disequilibrium in age interpretations. Geochimica et Cosmochimica Acta, 66, 23992419.CrossRefGoogle Scholar
Ball, C.J., Thorogood, G.J. and Vance, E.R. (1992) Thermal expansion coefficients of zirconolite (CaZrTi2O7) and perovskite (CaTiO3) from X-ray powder diffraction analysis. Journal of Nuclear Materials, 190, 298301.CrossRefGoogle Scholar
Bayliss, P., Mazzi, F., Munno, R. and White, T.J. (1989) Mineral nomenclature: zirconolite. Mineralogical Magazine, 53, 565569. https://doi.org/10.1180/minmag.1989.053.373.07CrossRefGoogle Scholar
Bellatreccia, F., Della Ventura, G., Caprilli, E., Williams, C.T. and Parodi, G.C. (1999) Crystal-chemistry of zirconolite and calzirtite from Jacupiranga, São Paulo (Brazil). Mineralogical Magazine, 63, 649660.CrossRefGoogle Scholar
Bellatreccia, F., Della Ventura, G., Williams, C.T., Lumpkin, G.R., Smith, K.L. and Colella, M. (2002) Non-metamict zirconolite polytypes from the feldspathoid-bearing alkali syenitic ejecta of the Vico volcanic complex (Latium, Italy). European Journal of Mineralogy, 14, 809820.CrossRefGoogle Scholar
Blackburn, L.R., Sun, S., Gardner, L.J., Maddrell, E.R., Stennett, M.C. and Hyatt, N.C. (2020) A systematic investigation of the phase assemblage and microstructure of the zirconolite CaZr1-xCexTi2O7 system. Journal of Nuclear Materials, 535, 111.CrossRefGoogle Scholar
Borodin, L.S., Nazarenko, I.I. and Rikhter, T.L. (1956) On the new mineral zirconolite - a complex AB3O7-type oxide. Doklady Akademii Nauk SSSR, 110, 845848 [in Russian].Google Scholar
Bruker (2011) DIFFRAC.TOPAS software. https://www.bruker.com.Google Scholar
Bubnova, R.S., Firsova, V.A., Volkov, S.N. and Filatov, S.K. (2018) Rietveld to tensor: program for processing powder x-ray diffraction data under variable conditions. Glass Physics and Chemistry, 44, 3340.CrossRefGoogle Scholar
Bulakh, A.G., Nesterov, A.R. and Williams, C.T. (2006) Zirconolite, CaZrTi2O7, re-examined from its type locality at Afrikanda, Kola Peninsula, Russia and some Synroc implications. Neues Jahrbuch für Mineralogie, Abhandlungen, 182, 109121.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Williams, C.T. (2004) Mineralogy of high-field-strength elements (Ti, Nb, Zr, Ta, Hf) in phoscoritic and carbonatitic rocks of the Kola Peninsula, Russia. Pp. 293340 in: Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province (Wall, F. and Zaitsev, A.N., editors). Mineralogical Society Series 10, Mineralogical Society, London.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Zaitsev, A.N. (1999) Calcite-amphibole-clinopyroxene rock from the Afrikanda complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites. I. Oxide minerals. The Canadian Mineralogist, 37, 177198.Google Scholar
Chakhmouradian, A.R. and Zaitsev, A.N. (2002) Calcite-amphibole-clinopyroxene rock from the Afrikanda, Kola Peninsula, Russia: Mineralogy and a possible link to carbonatites. III. Silicate minerals. The Canadian Mineralogist, 40, 1347.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Zaitsev, A.N. (2004) Afrikanda: an association of ultramafic, alkaline and alkali-silica-rich carbonatitic rocks from mantle-derived melts. Pp. 247291 in: Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province (Wall, F. and Zaitsev, A.N., editors). Mineralogical Society Series 10, Mineralogical Society, London.CrossRefGoogle Scholar
Cheary, R.W. and Coelho, A.A. (1997) A site occupancy analysis of zirconolite CaZrxTi3-xO7. Physics and Chemistry of Minerals, 24, 447454.CrossRefGoogle Scholar
Chukanov, N.V., Krivovichev, S.V., Pakhomova, A.S., Pekov, I.V., Schäfer, C., Vigasina, M.F. and Van, K.V. (2014) Laachite, (Ca,Mn)2Zr2Nb2TiFeO14, a new zirconolite-related mineral from the Eifel volcanic region, Germany. European Journal of Mineralogy, 26, 103111.CrossRefGoogle Scholar
Chukanov, N.V., Zubkova, N.V., Britvin, S.N., Pekov, I.V., Vigasina, M.F., Schäfer, C., Ternes, B., Schüller, W., Polekhovsky, Y.S., Ermolaeva, V.N. and Pushcharovsky, D.Y. (2018) Nöggerathite-(Ce), (Ce,Ca)2Zr2(Nb,Ti)(Ti,Nb)2Fe2+O14, a new zirconolite-related mineral from the Eifel volcanic region, Germany. Minerals, 8, 114.CrossRefGoogle Scholar
Chukanov, N.V, Zubkova, N.V, Pekov, I.V, Vigasina, M.F., Polekhovsky, Y.S., Ternes, B., Schüller, W., Britvin, S.N. and Pushcharovsky, D.Yu. (2019) Stefanweissite, (Ca,REE)2Zr2(Nb,Ti)(Ti,Nb)2Fe2+O14, a new zirconolite-related mineral from the Eifel paleovolcanic region, Germany. Mineralogical Magazine, 83, 607614.CrossRefGoogle Scholar
Coelho, A.A., Cheary, R.W. and Smith, K.L. (1997) Analysis and structural determination of Nd-substituted zirconolite-4M. Journal of Solid State Chemistry, 129, 346359.CrossRefGoogle Scholar
Della Ventura, G., Della Bellatreccia, F. and Williams, C.T. (2000) Zirconolite with significant REEZrNb(Mn,Fe)O7 from a xenolith of the Laacher See eruptive center, Eifel volcanic region, Germany. The Canadian Mineralogist, 38, 5765.CrossRefGoogle Scholar
Downes, H., Balaganskaya, E., Beard, A., Liferovich, R. and Demaiffe, D. (2005) Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: A review. Lithos, 85, 4875.CrossRefGoogle Scholar
Ewing, R.C. and Headley, T.J. (1983) Alpha-recoil damage in natural zirconolite (CaZrTi2O7). Journal of Nuclear Materials, 119, 102109.CrossRefGoogle Scholar
Gieré, R., Williams, C.T. and Lumpkin, G.R. (1998) Chemical characteristics of natural zirconolite. Schweizerische Mineralogische und Petrographische Mitteilungen, 78, 433459.Google Scholar
Gilbert, M.R., Selfslag, C., Walter, M., Stennett, M.C., Somers, J., Hyatt, N.C. and Livens, F.R. (2010) Synthesis and characterisation of Pu-doped zirconolites – (Ca1−xPux)Zr(Ti2-2xFe2x)O7. IOP Conference Series: Materials Science and Engineering, 9, 012007.CrossRefGoogle Scholar
Grey, I.E., Mumme, W.G., Ness, T.J., Roth, R.S. and Smith, K.L. (2003) Structural relations between weberite and zirconolite polytypes—refinements of doped 3T and 4M Ca2Ta2O7 and 3T CaZrTi2O7. Journal of Solid State Chemistry, 174, 285295.CrossRefGoogle Scholar
Hazen, R.M., Finger, L.W., Agrawal, D.K., McKinstry, H.A. and Perrotta, A.J. (1987) High-temperature crystal chemistry of sodium zirconium phosphate (NZP). Journal of Materials Research, 2, 329337.CrossRefGoogle Scholar
Hunter, B.A., Howard, C.J. and Kim, D.-J. (1998) Neutron diffraction study of tetragonal zirconias containing tetravalent dopants. Australian Journal of Physics, 51, 539545.CrossRefGoogle Scholar
ICDD, (2020) PDF-2 database. https://www.icdd.com/pdf-2/Google Scholar
Ivanyuk, G.Yu., Kalashnikov, A.O., Pakhomovsky, Ya.A., Mikhailova, J.A., Yakovenchuk, V.N., Konopleva, N.G., Sokharev, V.A., Bazai, A.V and Goryainov, P.M. (2016) Economic minerals of the Kovdor baddeleyite-apatite-magnetite deposit, Russia: mineralogy, spatial distribution and ore processing optimization. Ore Geology Reviews, 77, 279311.CrossRefGoogle Scholar
Ivanyuk, G.Yu., Yakovenchuk, V.N. and Pakhomovsky, Ya.A. (2002) Kovdor. Laplandia minerals, Apatity, Russia, 326 pp.Google Scholar
Ji, S., Liao, C.-Z., Chen, S., Zhang, K., Shih, K., Chang, C.-K., Sheu, H., Yan, S., Li, Y. and Wang, Z. (2021) Higher valency ion substitution causing different fluorite-derived structures in CaZr1-xNdxTi2-xNbxO7 0.05 ≤ x ≤ 1) solid solution. Ceramics International, 47, 26942704.CrossRefGoogle Scholar
Ji, S., Su, M., Liao, C., Ma, S., Wang, Z., Shih, K., Chang, C.K., Lee, J.F., Chan, T.S. and Li, Y. (2020) Synchrotron x-ray spectroscopy investigation of the Ca1−xLnxZrTi2−x(Al, Fe)xO7 zirconolite ceramics (Ln = La, Nd, Gd, Ho, Yb). Journal of the American Ceramic Society, 103, 14631475.CrossRefGoogle Scholar
Kapustin, Yu.L. (1980) Mineralogy of Carbonatites. Amerind Publishing, New Delhi, India, 259 pp.Google Scholar
Kessoft, S.E., Sinclair, W.J. and Ringwood, A.E. (1983) Solid solution limits in synroc zirconolite. Nuclear and Chemical Waste Management, 4, 259265.CrossRefGoogle Scholar
Kirillov, A.S. and Burova, T.A. (1967) Lueshites from Kola peninsula carbonatites. Mineralogy and Geochemistry, II, 2839 [in Russian].Google Scholar
Krasnova, N.I., Balaganskaya, E.G. and Garcia, D. (2004) Kovdor – classic phoscorites and carbonatites. Pp. 99132 in: Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province (Wall, F. and Zaitsev, A.N., editors). Mineralogical Society Series 10, Mineralogical Society, London.CrossRefGoogle Scholar
Kukharenko, A.A., Orlova, M.P., Bulakh, A.G., Bagdasarov, E.A., Rimskaya-Korsakova, O.M., Nefedov, E.I., Ilingsky, G.A., Sergeev, A.S. and Abakumova, N.B. (1965) The Caledonian complex of ultramafic, alkaline rocks and carbonatites of the Kola Peninsula and Northern Karelia. Nedra, Leningrad, Russia, 772 pp [in Russian].Google Scholar
Lewandowski, J.T., Pickering, I.J. and Jacobson, A.J. (1992) Hydrothermal synthesis of calcium – niobium and tantalum oxides with the pyrochlore structure. Materials Research Bulletin, 27, 981988.CrossRefGoogle Scholar
Lutze, W. and Ewing, R.C. (editors) (1988) Radioactive Waste Forms for the Future. North-Holland, Amsterdam, 778 pp.Google Scholar
Osokin, A.S. (1979) Accessory-rare-metal mineralization in carbonatites of one alkali-ultramafic massif (Kola Peninsula). Mineralogy and Geochemistry, 6, 2738 [in Russian].Google Scholar
Pascal, M.-L., Di Muro, A., Fonteilles, M. and Principe, C. (2009) Zirconolite and calzirtite in banded forsterite-spinel-calcite skarn ejecta from the 1631 eruption of Vesuvius: inferences for magma-wallrock interactions. Mineralogical Magazine, 73, 333356.CrossRefGoogle Scholar
Rigaku (2016) Integrated X-ray powder diffraction software PDXL. Rigaku Oxford Diffraction, UK.Google Scholar
Rimskaya-Korsakova, O.M., Burova, T.A. and Frank-Kamenetskiy, V.A. (1963) Lueshite from carbonatites of the Kovdor massif. Zapiski Vsesoyuznogo Mineralogicheskogo Obschestva, 92, 173183 [in Russian].Google Scholar
Salamat, A., McMillan, P.F., Firth, S., Woodhead, K., Hector, A.L., Garbarino, G., Stennett, M.C. and Hyatt, N.C. (2013) Structural transformations and disordering in zirconolite (CaZrTi2O7) at high pressure. Inorganic Chemistry, 52, 15501558.CrossRefGoogle ScholarPubMed
Sharygin, V.V., Doroshkevich, A.G. and Khromova, E.A. (2016) Nb-Fe-rich zirconolite-group minerals in calcite carbonatites of the Belaya Zima massif (Eastern Sayan). Mineralogy, 4, 318 [in Russian].Google Scholar
Siggel, A. and Jansen, M. (1990) ZrSn0,5Ti0,5O4 als Wirtsstruktur für keramische Farbkörper Strukturuntersuchungen an ZrTiO4 und ZrSn0,5Ti0,5O4. Zeitschrift für anorganische und allgemeine Chemie, 582, 93102 [in German].CrossRefGoogle Scholar
Strelnikova, L.A. and Polezhaeva, L.I. (1981) Accessory minerals of the pyrochlore group from carbonatites of some alkali-ultramafic massifs. Pp. 8188 in: Composition of Alkaline Intrusive Complexes of the Kola Peninsula. Kola Branch of the USSR Academy of Sciences, Apatity [in Russian].Google Scholar
Subbotin, V.V. and Subbotina, G.F. (2000) Minerals of the pyrochlore group in phoscorites and carbonatites of the Kola Peninsula. Vestnik of MSTU, 3, 273284 [in Russian].Google Scholar
Thompson, N.B.A., Frankland, V.L., Bright, J.W.G., Read, D., Gilbert, M.R., Stennett, M.C. and Hyatt, N.C. (2021) The thermal decomposition of studtite: analysis of the amorphous phase. Journal of Radioanalytical and Nuclear Chemistry, 327, 13351347.CrossRefGoogle Scholar
Vance, E.R., Ball, C.J., Blackford, M.G., Cassidy, D.J. and Smith, K.L. (1990) Crystallisation of zirconolite from an alkoxide precursor. Journal of Nuclear Materials, 175, 5866.CrossRefGoogle Scholar
Vance, E.R., Lumpkin, G.R., Carter, M.L., Cassidy, D.J., Ball, C.J., Day, R.A. and Begg, B.D. (2002) Incorporation of uranium in zirconolite (CaZrTi2O7). Journal of the American Ceramic Society, 85, 18531859.CrossRefGoogle Scholar
Whittle, K.R., Hyatt, N.C., Smith, K.L., Margiolaki, I., Berry, F.J., Knight, K.S. and Lumpkin, G.R. (2012) Combined neutron and X-ray diffraction determination of disorder in doped zirconolite-2M. American Mineralogist, 97, 291298.CrossRefGoogle Scholar
Williams, C.T. (1996) The occurrence of niobian zirconolite, pyrochlore and baddeleyite in the Kovdor carbonatite complex, Kola Peninsula, Russia. Mineralogical Magazine, 60, 639646.CrossRefGoogle Scholar
Williams, C.T. and Gieré, R. (1996) Zirconolite: A review of localities worldwide, and a compilation of its chemical compositions. Bulletin of the Natural History Museum, London, 52, 124.Google Scholar
Wu, F.Y., Yang, Y.H., Mitchell, R.H., Bellatreccia, F., Li, Q.L. and Zhao, Z.F. (2010) In-situ U-Pb and Nd-Hf-(Sr) isotopic investigations of zirconolite and calzirtite. Chemical Geology, 277, 178195.CrossRefGoogle Scholar
Yudintsev, S.V., Nickolsky, M.S., Ojovan, M.I., Stefanovsky, O.I., Nikonov, B.S. and Ulanova, A.S. (2022) Zirconolite polytypes and murataite polysomes in matrices for the REE-Actinide fraction of HLW. Materials, 15, 6091.CrossRefGoogle ScholarPubMed
Zaitsev, A.N. and Chakhmouradian, A.R. (2002) Calcite-amphibole-clinopyroxene rock from the Afrikanda complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites. II. Oxysalt minerals. The Canadian Mineralogist, 40, 103120.CrossRefGoogle Scholar
Zaitsev, A.N., Terry Williams, C., Jeffries, T.E., Strekopytov, S., Moutte, J., Ivashchenkova, O.V, Spratt, J., Petrov, S.V, Wall, F., Seltmann, R. and Borozdin, A.P. (2015) Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: Examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes. Ore Geology Reviews, 64, 477498.CrossRefGoogle Scholar
Zaitsev, A.N., Zhitova, E.S., Spratt John Zolotarev, A.A. and Krivovichev, S.V. (2017) Isolueshite, NaNbO3, from the Kovdor carbonatite, Kola peninsula, Russia: composition, crystal structure and possible formation scenarios. Neues Jahrbuch fürMineralogie – Abhandlungen Band, 194, Heft 2, 165173.CrossRefGoogle Scholar
Zhang, Y.B., Wang, J., Wang, J.X., Huang, Y., Luo, P., Liang, X.F. and Tan, H. Bin. (2018) Phase evolution, microstructure and chemical stability of Ca1-xZr1-xGd2xTi2O7 (0.0≤x≤1.0) system for immobilizing nuclear waste. Ceramics International, 44, 1357213579.CrossRefGoogle Scholar
Zubkova, N.V., Chukanov, N.V., Pekov, I.V., Ternes, B., Schüller, W., Ksenofontov, D.A. and Pushcharovsky, D.Yu. (2018) The crystal structure of nonmetamict Nb-rich zirconolite-3T from the Eifel paleovolcanic region, Germany. Zeitschrift für Kristallographie – Crystalline Materials, 233, 463468.CrossRefGoogle Scholar