Hostname: page-component-cb9f654ff-mx8w7 Total loading time: 0 Render date: 2025-08-26T04:52:45.713Z Has data issue: false hasContentIssue false

Metamict thorium orthosilicates from the syenite pegmatites of the Larvic Plutonic Complex, Norway: phase transformations and thermal behaviour

Published online by Cambridge University Press:  25 December 2024

Ruiqi Chen
Affiliation:
Department of Crystallography, St. Petersburg State University, St. Petersburg, Russia Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, Lille, France
Oleg I. Siidra*
Affiliation:
Department of Crystallography, St. Petersburg State University, St. Petersburg, Russia Kola Science Center, Russian Academy of Sciences, Apatity, Murmansk Region, Russia
Vladimir V. Shilovskikh
Affiliation:
Geomodel Resource Center, St. Petersburg State University, St. Petersburg, Russia
Vera A. Firsova
Affiliation:
Institute of Silicate Chemistry, Russian Academy of Sciences, St Petersburg, Russia;
Valery L. Ugolkov
Affiliation:
Institute of Silicate Chemistry, Russian Academy of Sciences, St Petersburg, Russia;
Elena L. Kotova
Affiliation:
Saint-Petersburg Mining Institute, St. Petersburg, Russia
*
Corresponding author: Oleg I. Siidra; Email: o.siidra@spbu.ru

Abstract

Three metamict thorium orthosilicate samples from the syenite pegmatites of the Larvic Plutonic Complex, Norway, were thoroughly examined using Raman spectroscopy, electron probe microanalyses (EPMA), electron back-scatter diffraction (EBSD) and differential scanning calorimetry (DSC). Their thermal evolution upon heating was investigated using in situ powder X-ray diffraction (HTXRD) in the range of 25–1200°C. One of the samples is a colour-zoned metamict thorium silicate with a preserved tetragonal shape. The zonation is due to the increasing hydration and element distribution. The EBSD indicates that the ratio of huttonite to thorite after the crystallisation significantly varies from zone to zone within the same sample. The crystallisation of thorite starts in the range of 420–480°C (lower than reported previously for mineral samples), while the emergence of huttonite peaks in HTXRD patterns occurs at 870–930°C. In contrast to huttonite, no thorite crystallisation peak is observed in the DSC curve. A wide temperature range is observed where both thorite and huttonite can coexist. Several fluorite-type phases form upon heating. Thorianite exists in the range of 810–1140°C. After the cooling, except for huttonite and thorite, the minor crystallised phases vary and may be represented by Ca–Th oxides and rhombohedral CaUO4.

The thermal expansion of the crystalline huttonite and thorite was determined as $\overline\alpha$V = 20.66 × 10–6 deg–1 for huttonite and $\overline\alpha$V = 12.54 × 10–6 deg–1 for thorite in the temperature range 25–1200°C. These findings contribute to a more in-depth understanding of the behaviour of thorium orthosilicates with complex compositions, both metamict and crystalline, at elevated temperatures. They have potential applications in mineralogy, nuclear chemistry and high-level waste management.

Information

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Irina O Galuskina

References

Asuvathraman, R. and Kutty, K.V.G. (2014) Thermal expansion behaviour of a versatile monazite phase with simulated HLW: A high temperature x-ray diffraction study. Thermochimica Acta, 581, 5461.10.1016/j.tca.2014.02.009CrossRefGoogle Scholar
Ball, C.J., Thorogood, G.J. and Vance, E.R. (1992) Thermal expansion coefficients of zirconolite (CaZrTi2O7) and perovskite (CaTiO3) from X-ray powder diffraction analysis. Journal of Nuclear Materials, 190, 298301.CrossRefGoogle Scholar
Blake, R.L., Hessevick, R.E., Zoltai, T. and Finger, L.W. (1966) Refinement of the hematite structure. American Mineralogist: Journal of Earth and Planetary Materials, 51, 123129.Google Scholar
Brauer, G. and Gradinger, H. (1950) On heterotypic mixed phases in rare earth oxides. I. Zeitschrift für Anorganische und Allgemeine Chemie, 276, 209226 [in German].10.1002/zaac.19542760502CrossRefGoogle Scholar
Bruker, (2015) DIFFRAC.TOPAS software. https://www.bruker.com.Google Scholar
Bubnova, R.S., Firsova, V.A., Volkov, S.N. and Filatov, S.K. (2018) RietveldToTensor: Program for processing powder X-ray diffraction data under variable conditions. Glass Physics and Chemistry, 44, 3340.10.1134/S1087659618010054CrossRefGoogle Scholar
Cartz, L., Karioris, F.G. and Gowda, K.A. (1982) Metamict states of ThSiO4 dimorphs, huttonite and thorite. Radiation Effects, 67, 8385.10.1080/01422448108226846CrossRefGoogle Scholar
Clausen, K., Hayes, W., MacDonald, J.E., Schnabel, P., Hutchings, M.T. and Kjems, J.K. (1983) Neutron scattering investigation of disorder in UO2 and ThO2 at high temperatures. High Temperatures – High Pressures, 15, 383390.Google Scholar
Clavier, N., Szenknect, S., Costin, D.T., Mesbah, A., Poinssot, C. and Dacheux, N. (2014) From thorite to coffinite: A spectroscopic study of Th1-xUxSiO4 solid solutions. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy, 118, 302307.10.1016/j.saa.2013.08.093CrossRefGoogle ScholarPubMed
Dachille, F. and Roy, R. (1964) Effectiveness of shearing stresses in accelerating solid phase reactions at low temperatures and high pressures. The Journal of Geology, 72, 243247.CrossRefGoogle Scholar
Davey, W.P. (1925) Precision measurements of the lattice constants of twelve common metals. Physical Review, 25, 753761.CrossRefGoogle Scholar
de Faria, D.L.A. and Lopes, F.N. (2007) Heated goethite and natural hematite: Can Raman spectroscopy be used to differentiate them? Vibrational Spectroscopy, 45, 117121.CrossRefGoogle Scholar
Ewing, R.C. (1994) The metamict state: 1993 - the centennial. Nuclear Inst. and Methods in Physics Research, B, 91, 2229.10.1016/0168-583X(94)96186-7CrossRefGoogle Scholar
Ewing, R.C. and Haaker, R.F. (1980) The metamict state: Implications for radiation damage in crystalline waste forms. Nuclear and Chemical Waste Management, 1, 5157.CrossRefGoogle Scholar
Eyal, Y., Lumpkin, G.R. and Ewing, R.C. (1986) Natural annealing of alpha-recoil damage in metamict minerals of the thorite group. MRS Online Proceedings Library (OPL), 84, 635643.CrossRefGoogle Scholar
Finch, C.B., Harris, L.A. and Clark, G.W. (1964) The thorite → huttonite phase transformation as determined by growth of synthetic thorite and huttonite single crystals. The American Mineralogist, 49, 782785.Google Scholar
Förster, H.J., Harlov, D.E. and Milke, R. (2000) Composition and Th-U-total Pb ages of huttonite and thorite from Gillespie’s Beach, South Island, New Zealand. The Canadian Mineralogist, 38, 675684.CrossRefGoogle Scholar
Frost, R.L., Čejka, J., Weier, M.L. and Martens, W.N. (2006) Raman spectroscopy study of selected uranophanes. Journal of Molecular Structure, 788, 115125.CrossRefGoogle Scholar
Fuchs, L.H. and Gebert, E. (1958) X-ray studies of synthetic coffinite, thorite and uranothorites. The American Mineralogist, 43, 243248.Google Scholar
Galuskin, E.V., Armbruster, T., Galuskina, I.O., Lazic, B., Winiarski, A., Gazeev, V.M., Dzierzanowski, P., Zadov, A.E., Pertsev, N.N., Wrzalik, R., Gurbanov, A.G. and Janeczek, J. (2011) Vorlanite (CaU6+)O4 - A new mineral from the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia. American Mineralogist, 96, 188196.10.2138/am.2011.3610CrossRefGoogle Scholar
George, D.R. (1951) Thorite from California, a new occurrence and variety. American Mineralogist, 36, 129132.Google Scholar
ICDD (2022) PDF–2 database. International centre for diffraction data. https://www.icdd.com/pdf-2/.Google Scholar
Jégou, C., Caraballo, R., Peuget, S., Roudil, D., Desgranges, L. and Magnin, M. (2010) Raman spectroscopy characterization of actinide oxides (U1−yPuy)O2: Resistance to oxidation by the laser beam and examination of defects. Journal of Nuclear Materials, 405, 235243.10.1016/j.jnucmat.2010.08.005CrossRefGoogle Scholar
Jin, G.B. and Soderholm, L. (2015) Solid-state syntheses and single-crystal characterizations of three tetravalent thorium and uranium silicates. Journal of Solid State Chemistry, 221, 405410. Elsevier.Google Scholar
Knyazev, A.V., Komshina, M.E. and Savushkin, I.A. (2017) Synthesis and high-temperature X-ray diffraction study of thorium orthosilicate. Radiochemistry, 59, 225228.10.1134/S106636221703002XCrossRefGoogle Scholar
Kolesov, B. (2006) Raman investigation of H2O molecule and hydroxyl groups in the channels of hemimorphite. American Mineralogist, 91, 13551362.10.2138/am.2006.2179CrossRefGoogle Scholar
Liegeois-Duyckaerts, M. (1977) Infrared and Raman spectrum of CaUO4: New data and interpretations. Spectrochimica Acta Part A: Molecular Spectroscopy, 33, 709713.10.1016/0584-8539(77)80074-3CrossRefGoogle Scholar
Loopstra, B.O. and Rietveld, H.M. (1969) The structure of some alkaline-earth metal uranates. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 25, 787791.10.1107/S0567740869002974CrossRefGoogle Scholar
Lumpkin, G.R. and Chakoumakos, B.C. (1988) Chemistry and radiation effects of thorite-group minerals from the Harding pegmatite, Taos County, New Mexico. American Mineralogist, 73, 14051419.Google Scholar
Lumpkin, G.R., Gao, Y., Gieré, R., Williams, C.T., Mariano, A.N. and Geisler, T. (2014) The role of Th-U minerals in assessing the performance of nuclear waste forms. Mineralogical Magazine, 78, 10711095.10.1180/minmag.2014.078.5.01CrossRefGoogle Scholar
Mazeina, L., Ushakov, S.V., Navrotsky, A. and Boatner, L.A. (2005) Formation enthalpy of ThSiO4 and enthalpy of the thorite → huttonite phase transition. Geochimica et Cosmochimica Acta, 69, 46754683.10.1016/j.gca.2005.03.053CrossRefGoogle Scholar
Meier, W.M. (1973) Symmetry aspects of zeolite frameworks. Advances in Chemistry Series, 121, 3951.10.1021/ba-1973-0121.ch003CrossRefGoogle Scholar
Meldrum, A., Boatner, L.A., Zinkle, S.J., Wang, S.X., Wang, L.M., and Ewing, R.C. (1999a) Effects of dose rate and temperature on the crystalline-to-metamict transformation in the ABO4 orthosilicates. The Canadian Mineralogist, 37, 207221.Google Scholar
Meldrum, A., Zinkle, S.J., Boatner, L.A. and Ewing, R.C. (1999b) Heavy-ion irradiation effects in the ABO4 orthosilicates: decomposition, amorphization, and recrystallization. Physical Review B - Condensed Matter and Materials Physics, 59, 39813992.10.1103/PhysRevB.59.3981CrossRefGoogle Scholar
Ni, Y., Hughes, J.M. and Mariano, A.N. (1995) Crystal chemistry of the monazite and xenotime structures. American Mineralogist, 80, 2126.10.2138/am-1995-1-203CrossRefGoogle Scholar
Pabst, A. (1952) The metamict state. American Mineralogist, 37, 137157.Google Scholar
Pabst, A. and Hutton, C.O. (1951) Huttonite, a new monoclinic thorium silicate. American Mineralogist, 5, 6065.Google Scholar
Piilonen, P.C., Rowe, R., Poirier, G., Grice, J.D. and McDonald, A.M. (2014) Discreditation of thorogummite. The Canadian Mineralogist, 52, 769774.CrossRefGoogle Scholar
Rigaku, (2010) Integrated X-ray powder diffraction software PDXL. The Rigaku Journal, 26, 2327.Google Scholar
Robinson, S.C. and Abbey, S. (1957) Uranothorite from eastern Ontario. The Canadian Mineralogist, 14, 114.Google Scholar
Seydoux-Guillaume, A.M., Wirth, R., Heinrich, W. and Montel, J.-M. (2002) Experimental determination of Thorium partitioning between monazite and xenotime using analytical electron microscopy and X-ray diffraction Rietveld analysis. European Journal of Mineralogy, 14, 869878. https://doi.org/10.1127/0935-1221/2002/0014-0869CrossRefGoogle Scholar
Shelly, L., Schweke, D., Danon, A., Rosen, B.A. and Hayun, S. (2023) Exploring the redox properties of Ce1–xUxO2±δ (x ≤ 0.5) oxides for energy applications. Inorganic Chemistry, 62, 1145611465.CrossRefGoogle ScholarPubMed
Shelyug, A., Rafiuddin, M.R., Mesbah, A., Clavier, N., Szenknect, S., Dacheux, N., Guo, X. and Navrotsky, A. (2021) Effect of annealing on structural and thermodynamic properties of ThSiO4-ErPO4 xenotime solid solution. Inorganic Chemistry, 60, 1202012028.CrossRefGoogle ScholarPubMed
Staatz, M.H., Adams, J.W. and Wahlberg, J.S. (1976) Brown, yellow, orange, and greenish-black thorites from the Seerie pegmatite, Colorado. Journal of Research of the US Geological Survey, 4, 575582.Google Scholar
Stark, M. and Noller, M. (2022) Spectral variability of the uranyl silicates uranophane-α and uranophane-β: polymorphism and luminescence. Physics and Chemistry of Minerals, 50, 2.CrossRefGoogle Scholar
Strzelecki, A.C., Barral, T., Estevenon, P., Mesbah, A., Goncharov, V., Baker, J., Bai, J., Clavier, N., Szenknect, S., Migdisov, A., Xu, H., Ewing, R.C., Dacheux, N. and Guo, X. (2021) The role of water and hydroxyl groups in the structures of stetindite and coffinite, MSiO4(M = Ce, U). Inorganic Chemistry, 60, 718735.10.1021/acs.inorgchem.0c02757CrossRefGoogle ScholarPubMed
Taylor, M. and Ewing, R.C. (1978) The crystal structures of the ThSiO4 polymorphs: huttonite and thorite. Acta Crystallographica, B34, 10741079.CrossRefGoogle Scholar
Yudintsev, S.V., Nickolsky, M.S., Ojovan, M.I., Stefanovsky, O.I., Nikonov, B.S. and Ulanova, A.S. (2022) Zirconolite polytypes and murataite polysomes in matrices for the REE—actinide fraction of HLW. Materials, 15.CrossRefGoogle ScholarPubMed
Zaitsev, A.N., Chakhmouradian, A.R., Siidra, O.I., Spratt, J., Williams, C.T., Stanley, C.J., Petrov, S.V, Britvin, S.N. and Polyakova, E.A. (2011) Fluorine-, yttrium- and lanthanide-rich cerianite-(Ce) from carbonatitic rocks of the Kerimasi volcano and surrounding explosion craters, Gregory Rift, northern Tanzania. Mineralogical Magazine, 75, 28132822.10.1180/minmag.2011.075.6.2813CrossRefGoogle Scholar
Supplementary material: File

Chen et al. supplementary material

Chen et al. supplementary material
Download Chen et al. supplementary material(File)
File 205.5 KB