Hostname: page-component-54dcc4c588-mz6gc Total loading time: 0 Render date: 2025-10-02T11:37:43.730Z Has data issue: false hasContentIssue false

Badalovite, NaNaMg(MgFe3+)(AsO4)3, and associated calciojohillerite, NaCaMgMg2(AsO4)3, from Biancavilla, Etna volcanic complex, Sicily, Italy: occurrence and crystal chemistry

Published online by Cambridge University Press:  31 January 2025

Daniela Mauro*
Affiliation:
Museo di Storia Naturale, Università di Pisa, Calci, Italy Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
Jiří Sejkora
Affiliation:
Department of Mineralogy and Petrology, National Museum, Praha, Czech Republic
Zdeněk Dolníček
Affiliation:
Department of Mineralogy and Petrology, National Museum, Praha, Czech Republic
*
Corresponding author: Daniela Mauro; Email: daniela.mauro@unipi.it

Abstract

Two alluaudite-group minerals, badalovite, ideally NaNaMg(MgFe3+)(AsO4)3, and calciojohillerite, NaCaMgMg2(AsO4)3, have been identified on a specimen from the Monte Calvario quarry, Biancavilla, Etna volcanic complex, Sicily, Italy. For both species, this finding represents the second world occurrence. The studied sample was characterised using electron microprobe analysis, micro-Raman spectroscopy, and single-crystal X-ray diffraction. Badalovite occurs as vitreous to resinous aggregates of yellowish to brownish prismatic crystals, up to 0.5 mm in length, associated with tabular crystals of hematite, pseudobrookite and an amphibole-supergroup mineral. Badalovite is intimately intergrown with minor calciojohillerite. The chemical formulae of these two alluaudite-group members, recalculated on the basis of 12 O atoms per formula unit and assuming the occurrence of Fe3+, are (Na1.74(11)K0.01(1)Ca0.30(8))Ʃ2.05(Mg1.74(2)Mn0.27(2)Ca0.11(8)Zn0.03(1)Fe0.84(14)Al0.02(2))Ʃ3.01(As2.85(4)P0.11(3))Ʃ2.96O12 and (Na1.44(2)K0.01(1)Ca0.66(1))Ʃ2.11(Mg2.27(1)Mn0.28(1)Zn0.01(1)Fe0.48(2))Ʃ3.00(As2.79(3)P0.13(2))Ʃ2.92O12, respectively. Single-crystal X-ray diffraction data collected on badalovite gave the following unit-cell parameters a = 11.9760(5), b = 12.7857(5), c = 6.6650(3) Å, β = 112.689(2)°, V = 941.58(7) Å3, space group C2/c. Its crystal structure was refined to R1 = 0.0257 for 1711 unique reflections with Fo > 4σ(Fo) and 97 least-square parameters. The crystal chemical and spectroscopic data as well as the genesis of badalovite are discussed and a comparison with the Russian type material is reported.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Peter Leverett

References

Andreozzi, G.B., Ballirano, P., Gianfagna, A., Mazziotti-Tagliani, S. and Pacella, A. (2009) Structural and spectroscopic characterization of a suite of fibrous amphiboles with high environmental and health relevance from Biancavilla (Sicily, Italy). American Mineralogist, 94, 13331340.CrossRefGoogle Scholar
Auernhammer, M., Effenberger, H., Hentschel, G., Reinnecke, T. and Tillmanns, E. (1993) Nickenichite, a new arsenate from Eifel, Germany. Mineralogy and Petrology, 48, 153166.CrossRefGoogle Scholar
Bruker AXS Inc. (2022) APEX4. Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.Google Scholar
Burragato, F., Comba, P., Baiocchi, V., Palladino, D.M., Simei, S., Gianfagna, A., Paoletti, L. and Pasetto, R. (2005) Geo-volcanological, mineralogical and environmental aspects of quarry materials related to pleural neoplasm in the area of Biancavilla, Mount Etna (Eastern Sicily, Italy). Environmental Geology, 47, 855868.CrossRefGoogle Scholar
Ercit, T.S. (1993) Caryinite revisited. Mineralogical Magazine, 57, 721727.CrossRefGoogle Scholar
Foord, E.E., Hlava, P.F., Fitzpatrick, J.J., Erd, R.C. and Hinton, R.W. (1991) Maxwellite and squawcreekite, two new minerals from the Black Range tin district, Catron County, New Mexico, U.S.A. Neues Jahrbuch für Mineralogie, Monatshefte, 1991, 363384.Google Scholar
Gagné, O.C. and F.C, Hawthorne. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Gianfagna, A. and Oberti, R. (2001) Fluoro-edenite from Biancavilla (Catania, Sicily, Italy): Crystal chemistry of a new amphibole end-member. American Mineralogist, 86, 14891493.CrossRefGoogle Scholar
Gianfagna, A., Scordari, F., Mazziotti-Tagliani, S., Ventruti, G. and Ottolini, L. (2007a) Fluorophlogopite from Biancavilla (Mt. Etna, Sicily, Italy): Crystal structure and crystal chemistry of a new F-dominant analog of phlogopite. American Mineralogist, 92, 16011609.CrossRefGoogle Scholar
Gianfagna, A., Andreozzi, G.B., Ballirano, P. and Mazziotti-Tagliani, S. (2007b) Structural and chemical contrasts between prismatic and fibrous fluoro-edenite from Biancavilla, Sicily, Italy. The Canadian Mineralogist, 45, 249262.CrossRefGoogle Scholar
Gianfagna, A., Mazziotti-Tagliani, S., Croce, A., Allegrina, M. and Rinaudo, C. (2014) As-rich apatite from Mt. Calvario: characterization by micro-Raman spectroscopy. The Canadian Mineralogist, 52, 799808.CrossRefGoogle Scholar
Hatert, F. (2019) A new nomenclature scheme for the alluaudite supergroup. European Journal of Mineralogy, 31, 807822.CrossRefGoogle Scholar
Huminicki, D.M.C. and Hawthorne, F.C. (2002) The crystal chemistry of the phosphate minerals. Reviews in Mineralogy and Geochemistry, 48, 123253.CrossRefGoogle Scholar
Koshlyakova, N.N., Pekov, I.V., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V., Agakhanov, A.A., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Y. (2020) Manganobadalovite, IMA 2020-035. CNMNC Newsletter No. 57. Mineralogical Magazine, 84, 791794.Google Scholar
Koshlyakova, N.N., Pekov, I.V., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V., Agakhanov, A.A., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Y. (2021) Calciohatertite, IMA 2021-013. CNMNC Newsletter 62. Mineralogical Magazine, 85, 634638.Google Scholar
Koshlyakova, N.N., Pekov, I.V., Agakhanov, A.A., Bullock, E., Belakovskiy, D.I., Zubkova, N.V., Chukanov, N.V., Britvin, S.N., Bulakh, M.O., Burns, P.C., Hazen, R.M. and Zhitova, E.S. (2024) Manganohatertite, IMA 2023-098. CNMNC Newsletter 77. Mineralogical Magazine, 88, 203209.Google Scholar
Krivovichev, S.V., Vergasova, L.P., Filatov, S.K., Rybin, D.S., Britvin, S.N. and Ananiev, V.V. (2013) Hatertite, Na2(Ca,Na)(Fe3+,Cu)2(AsO4)3, a new alluaudite-group mineral from Tolbachik fumaroles, Kamchatka peninsula, Russia. European Journal of Mineralogy, 25, 683691.CrossRefGoogle Scholar
Majzlan, J., Drahota, P. and Filippi, M. (2014) Parageneses and crystal chemistry of arsenic minerals. Reviews in Mineralogy and Geochemistry, 79, 17184.CrossRefGoogle Scholar
Mazziotti-Tagliani, S., Angelone, M., Armiento, G., Pacifico, R., Cremisini, C. and Gianfagna, A. (2012) Arsenic and fluorine in the Etnean volcanics from Biancavilla, Sicily, Italy: environmental implications. Environmental Earth Science, 66, 561572.CrossRefGoogle Scholar
Palmer, D.C. (2014) CrystalMaker. CrystalMaker Software Ltd., Begbroke, Oxfordshire, England.Google Scholar
Pekov, I.V., Lykova, I.S., Koshlyakova, N.N., Belakovskiy, D.I., Vigasina, M.F., Agakhanov, A.A., Britvin, S.N., Turchkova, A.G., Sidorov, E.G. and Giester, G. (2016) Magnesiohatertite, IMA 2016-078. CNMNC Newsletter No. 34, December 2016, page 1319. Mineralogical Magazine, 80, 13151321.Google Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018) Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305322.CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Agakhanov, A.A., Zubkova, N.V., Belakovskiy, D. I., Vigasina, M. F., Turchkova, A.G., Sidorov, E.G. and Pushcharovsky, D.Y. (2020a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XIV. Badalovite, NaNaMg(MgFe3+)(AsO4)3, a member of the alluaudite group. Mineralogical Magazine, 84 616622.CrossRefGoogle Scholar
Pekov, I.V., Lykova, I., Koshlyakova, N.N., Belakovskiy, D.I., Vigasina, M.F., Turchkova, A.G., Britvin, S.N., Sidorov, E.G. and Scheidl, K.S. (2020b) A new mineral species zincobradaczekite, NaCuCuZn2(AsO4)3, and a new isomorphous series bradaczekite-zincobradaczekite in the alluaudite group. Physics and Chemistry of Minerals, 47, 36.CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Agakhanov, A.A., Zubkova, N.V., Belakovskiy, D. I., Vigasina, M. F., Turchkova, A.G., Sidorov, E.G. and Pushcharovsky, D.Y. (2021) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XV. Calciojohillerite, NaCaMgMg2(AsO4)3, a member of the alluaudite group. Mineralogical Magazine, 85, 215223.CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V., Agakhanov, A.A., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Y. (2022a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XVIII. Khrenovite, Na3Fe3+2(AsO4)3, the member with the highest sodium in the alluaudite supergroup. Mineralogical Magazine, 86, 897902.CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N, Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V., Agakhanov, A.A., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Y. (2022b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XVII. Paraberzeliite, NaCaCaMg2(AsO4)3, an alluaudite-group member dimorphous with berzeliite. Mineralogical Magazine, 86, 103111.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ (ϕρZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco.Google Scholar
Scordari, F., Schingaro, E., Ventruti, G., Nicotra, E., Viccaro, M. and Mazziotti-Tagliani, S. (2013) Fluorophlogopite from Piano delle Concazze (Mt. Etna, Italy): Crystal chemistry and implications for the crystallization conditions. American Mineralogist, 98, 10171025.CrossRefGoogle Scholar
Sejkora, J., Plášil, J., Čejka, J., Dolníček, Z. and Pavlíček, R. (2020) Molecular structure of the arsenate mineral chongite from Jáchymov – a vibrational spectroscopy study. Journal of Geosciences, 65, 111120.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Sicurella, G., Ciriotti, M.E., Gianfagna, A., Mazziotti-Tagliani, S. and Blass, G. (2010) Minerali di Monte Calvario, Biancavilla, (Catania, Sicilia). Micro, 329368.Google Scholar
Tait, K.T. and Hawthorne, F.C. (2003) Refinement of the crystal structure of arseniopleite: confirmation of its status as a valid species. The Canadian Mineralogist, 41, 7177.CrossRefGoogle Scholar
Tait, K.T., Hawthorne, F.C. and Halden, N.M. (2021) Alluaudite-group phosphate and arsenate minerals. The Canadian Mineralogist, 59, 243263.CrossRefGoogle Scholar
Wilson, A.J.C. (1992) International Tables for Crystallography. Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Wilson, W.E. (1986) Durangite from Utah. Mineralogical Record, 17, 342.Google Scholar
Wojdyr, M. (2010) Fityk: a general-purpose peak fitting program. Journal of Applied Crystallography, 43, 11261128.CrossRefGoogle Scholar
Supplementary material: File

Mauro et al. supplementary material 1

Mauro et al. supplementary material
Download Mauro et al. supplementary material 1(File)
File 244.3 KB
Supplementary material: File

Mauro et al. supplementary material 2

Mauro et al. supplementary material
Download Mauro et al. supplementary material 2(File)
File 105 KB