Hostname: page-component-54dcc4c588-2bdfx Total loading time: 0 Render date: 2025-10-02T08:05:25.020Z Has data issue: false hasContentIssue false

Errata to “Isomorphism theorems between models of mixed choice,” fixes and consequences

Published online by Cambridge University Press:  24 September 2025

Jean Goubault-Larrecq*
Affiliation:
Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190, Gif-sur-Yvette, France
*

Abstract

The results of Section 3.1 of the 2017 paper “Isomorphism Theorems between Models of Mixed Choice” need an additional assumption when $\bullet$ is “$1$.” If $\bullet$ is nothing or “$\leq 1$,” no change is needed. Also, the mistake only applies to the angelic cases, namely to the maps $r_{{\mathtt {A}}{\mathtt {P}}}$ and $s^\bullet _{{\mathtt {A}}{\mathtt {P}}}$; the demonic cases $r_{{\mathtt {D}}{\mathtt {P}}}$ and $s^\bullet _{{\mathtt {D}}{\mathtt {P}}}$ are unaffected. If $\bullet$ is “$1$,” and in the angelic cases, instead of just assuming that $\mathcal L X$ is locally convex, we need to additionally assume that $X$ is compact, or that $\mathcal L X$ is locally convex-compact, sober, and topological – for example, if $X$ is core-compact – or that $X$ is LCS-complete, namely, a homeomorph of a $G_\delta$ subspace of a locally compact sober space.

Information

Type
Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alvarez-Manilla, M. (2000). Measure theoretic results for continuous valuations on partially ordered spaces. Phd thesis, London, Imperial College.Google Scholar
de Brecht, M. (2013). Quasi-Polish spaces. Annals of Pure and Applied Logic 164 (3) 356381.Google Scholar
de Brecht, M., Goubault-Larrecq, J., Jia, X. and Lyu, Z. (2019). Domain-complete and LCS-complete spaces. Electronic Notes in Theoretical Computer Science 345 335. Proc. 8th International Symposium on Domain Theory (ISDT’19).10.1016/j.entcs.2019.07.014CrossRefGoogle Scholar
Dolecki, S., Greco, G. H. and Lechicki, A. (1995). When do the upper Kuratowski topology (homeomorphically, Scott topology) and the co-compact topology coincide? Transactions of the American Mathematical Society 347 (8) 28692884.10.1090/S0002-9947-1995-1303118-7CrossRefGoogle Scholar
Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. and Scott, D. S. (2003). Continuous Lattices and Domains, Vol. 93 of Encyclopedia of Mathematics and its Applications, Cambridge University Press.10.1017/CBO9780511542725CrossRefGoogle Scholar
Goubault-Larrecq, J. (2013). Non-Hausdorff Topology and Domain Theory—Selected Topics in Point-Set Topology, Vol. 22 of New Mathematical Monographs. Cambridge University Press.10.1017/CBO9781139524438CrossRefGoogle Scholar
Goubault-Larrecq, J. (2015). Full abstraction for non-deterministic and probabilistic extensions of PCF I: the angelic cases. Journal of Logic and Algebraic Methods in Programming 84 (1) 155184.10.1016/j.jlamp.2014.09.003CrossRefGoogle Scholar
Goubault-Larrecq, J. (2017). Isomorphism theorems between models of mixed choice. Mathematical Structures in Computer Science 27 (6) 10321067.10.1017/S0960129515000547CrossRefGoogle Scholar
Goubault-Larrecq, J. (2021). Kantorovich-Rubinstein quasi-metrics I: Spaces of measures and of continuous valuations. Topology and its Applications 295 107673.Google Scholar
Goubault-Larrecq, J. (2022a). Complete quasi-metrics for hyperspaces, continuous valuations, and previsions. arXiv report 1707.03784 [math.GN].Google Scholar
Goubault-Larrecq, J. (2022b). Kantorovich-Rubinstein quasi-metrics III: Spaces of sublinear and superlinear previsions. Topology and its Applications 321 108259.Google Scholar
Goubault-Larrecq, J. (2023). Kantorovich-Rubinstein quasi-metrics IV: Lenses, quasi-lenses and forks. Topology and its Applications 332 108513.10.1016/j.topol.2023.108513CrossRefGoogle Scholar
Goubault-Larrecq, J. (2024b). On the preservation of projective limits by functors of non-deterministic, probabilistic, and mixed choice. arXiv report 2407.10235 [math.GN].Google Scholar
Goubault-Larrecq, J. (2024c). Weak distributive laws between monads of continuous valuations and of non-deterministic choice. arXiv report 2408.15977 [math.CT].Google Scholar
Goubault-Larrecq, J. (2025). On local compactness of spaces of continuous valuations. Topology Proceedings 65 135148.Google Scholar
Goubault-Larrecq, J. and Jia, X. (2019). Algebras of the extended probabilistic powerdomain monad. Electronic Notes in Theoretical Computer Science 345 3761. Proc. 8th International Symposium on Domain Theory (ISDT’19).Google Scholar
Goubault-Larrecq, J. (2024a). Isomorphism theorems between models of mixed choice (revised). arXiv report 2411.13500 [cs.LO], 2024. Latest version as of this writing, june 2025.Google Scholar
Keimel, K. (2008). Topological cones: Functional analysis in a T 0-setting. Semigroup Forum 77 (1) 109142.10.1007/s00233-008-9078-0CrossRefGoogle Scholar
Keimel, K. and Plotkin, G. (2017). Mixed powerdomains for probability and nondeterminism. Logical Methods in Computer Science 13 (1).Google Scholar
Kirch, O. (1993). Bereiche und Bewertungen. Diplomarbeit, Technische Hochschule Darmstadt.Google Scholar
Lopez, A. and Simpson, A. (2018). Basic operational preorders for algebraic effects in general, and for combined probability and nondeterminism in particular. In: Ghica, D. and Jung, A. (eds.) 27th EACSL Annual Conference on Computer Science Logic (CSL 2018), Vol. 119 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl Leibniz-Zentrum fuer Informatik, 29:1–29:17.Google Scholar
Tix, R. (1995). Stetige Bewertungen auf topologischen Räumen. Diplomarbeit, Technische Hochschule Darmstadt.Google Scholar