We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
REFERENCES
[1]
[1]Crowell, R. H.. The group G′/G″ of a knot groupG. Duke Math. J.30 (1963), 349–354.Google Scholar
[2]
[2]Crowell, R. H.. The derived module of a homomorphism. Adv. in Math.6 (1971), 210–222.Google Scholar
[3]
[3]Crowell, R. H. and Fox, R. H.. Introduction to Knot Theory (Ginn Blaisdell, 1963).Google Scholar
[4]
[4]Fox, R. H.. Free differential calculus 2. Ann. of Math.59 (1954), 196–210.CrossRefGoogle Scholar
[5]
[5]Fox, R. H.. Some problems in knot theory. Topology of 3-Manifolds and Related Topics, ed. Fort, M. K.Jr. (Prentice-Hall, 1962), pp. 168–176.Google Scholar
[6]
[6]Lang, S.. Algebra (Addison-Wesley World Student Series Edition, 2nd printing, 1970).Google Scholar
[7]
[7]Newman, M.. Integral Matrices, Pure and Applied Mathematics Series, vol. 45 (Academic Press, 1972).Google Scholar
[8]
[8]Noethcott, D. G.. An Introduction to Homological Algebra (Cambridge University Press, reprint, 1st ed., 1962).Google Scholar
[9]
[9]O'Meara, O. T.. Introduction to Quadratic Forms, Grundlehren der Math. Wissenschaften 117 (Springer-Verlag, 1963).CrossRefGoogle Scholar
[10]
[10]Pizer, A.. Matrices over group rings which are Alexander matrices. Osaka J. Math.21 (1984), 461–472.Google Scholar
[11]
[11]Rapaport, E. S.. On the commutator subgroup of a knot group. Ann. of Math.71 (1960), 157–162.Google Scholar
[12]
[12]Rolfsen, D.. Knots and Links (Publish or Perish, 1976).Google Scholar
[13]
[13]Rolfsen, D.. A surgical view of Alexander's polynomial, Geometric Topology, ed. Glaser, L. C. and Rushing, T. B.. Lect. Notes in Math., vol. 438 (Springer-Verlag, 1975), 415–425.Google Scholar
[14]
[14]Schreier, O. and Sperner, E.. Modern Algebra and Matrix Theory (New York, 1951).Google Scholar
[15]
[15]Seifert, H.. Über das Geschlect von Knoten. Math. Ann110 (1934), 571–592.Google Scholar
[16]
[16]Torres, G. and Fox, R. H.. Dual presentations of the group of a knot. Ann. of Math.59 (1954), 211–218.Google Scholar
[17]
[17]Trotter, H. F.. On S-equivalence of Seifert matrices. Inventiones Math.20 (1973), 173–207.CrossRefGoogle Scholar
[18]
[18]Trotter, H. F.. Torsion free metabelian groups with infinite cyclic quotient groups. Proc. Second Internal. Conf. Theory of Groups, Lect. Notes in Math. vol.372 (Springer-Verlag, 1973), 655–666.CrossRefGoogle Scholar
[19]
[19]Trotter, H. F.. Knot modules and Seifert matrices, Knot Theory, Lect. Notes in Math, vol. 685 (Springer Verlag, 1977), 291–299.Google Scholar