We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
REFERENCES
(1)
(1)Choquet, G.Ensembles boréliens et analytiques dans les espaces topologiques. C.R. Acad. Sci. Paris232 (1951), 2174–2176.Google Scholar
(2)
(2)Choquet, G.Ensembles -analytiques et -Sousliniens. Cas général et cas metrique. Ann. Inst. Fourier (Grenoble) 9 (1959), 75–81.CrossRefGoogle Scholar
(6)Frolík, Z.A survey of separable descriptive theory of sets. General Topology and its Relations to Modern Analysis and Algebra. 1. Proc. Symp. Prague (1961), 157–173.Google Scholar
(7)
(7)Frolík, Z.A note on C(P) and Baire sets in compact and metrizable spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.15 (1967), 779–784.Google Scholar
(8)
(8)Frolík, Z.A survey of separable descriptive theory of sets and spaces. Czechoslovak Math. J.20 (1970), 406–467.CrossRefGoogle Scholar
(9)
(9)Frolík, Z.Stone–Weierstrass theorems for C(X) with the sequential topology. Proc. Amer. Math. Soc.27 (1971), 486–494.Google Scholar
(10)
(10)Gillman, L. and Jerison, M.Rings of continuous functions (Van Nostrand Co.; Princeton, 1960).CrossRefGoogle Scholar
(11)
(11)Ishii, T.On closed mappings and M-spaces. II. Proc. Japan Acad.43 (1967), 757–761.Google Scholar
(12)
(12)Jayne, J. E.Topological representations of measurable spaces. General Topology and its Relations to Modern Analysis and Algebra. III. Proc. Symp. Prague (1971), 217–221.Google Scholar
(13)
(13)Jayne, J. E. Characterizations and metrization of proper analytic spaces. To appear.Google Scholar
(14)
(14)Keldych, L.Sur les transformations ouvertes des ensembles A. C.R. Acad. Bulgare. Sci.49 (1945), 622–624.Google Scholar
(15)
(15)Kuratowski, K.Topology, Vol. I (Academic Press; New York, 1966).Google Scholar
(16)
(16)Morita, K.Some properties of M-spaces. Proc. Japan Acad.43 (1967), 869–872.Google Scholar
(17)
(17)Rogers, C. A.Descriptive Borel sets. Proc. Roy. Soc. Ser.A286 (1965), 455–478.Google Scholar
(18)
(18)Taiˇmanov, A. D.On closed mappings. I. Mat. Sb.36 (1955), 349–352.Google Scholar
(19)
(19)Taiˇmanov, A. D.On open mappings of Borel sets. Mat. Sb. (N.S.) 37 (1955), 293–300.Google Scholar
(20)
(20)Taiˇmanov, A. D. and Arhangel'skii˘, . On a theorem of V. Ponomarev. Soviet Math. Dokl.1 (1960), 1242–1243.Google Scholar