Hostname: page-component-54dcc4c588-m259h Total loading time: 0 Render date: 2025-10-02T10:23:32.079Z Has data issue: false hasContentIssue false

Quasi-invariant lifts of completely positive maps for groupoid actions

Published online by Cambridge University Press:  19 August 2025

SUVRAJIT BHATTACHARJEE
Affiliation:
Matematisk institutt, Universitetet i Oslo, P.O. Box 1053, Blindern, 0316 Oslo, Norway. e-mail: suvrajib@math.uio.no
MARZIEH FOROUGH
Affiliation:
Department of Applied Mathematics, Faculty of Information Technology, Czech Technical University in Prague, Thákurova 9, 160 00, Prague 6, Czech Republic. e-mail: foroumar@fit.cvut.cz

Abstract

Let G be a locally compact, Hausdorff, second countable groupoid and A be a separable, $C_0(G^{(0)})$-nuclear, G-$C^*$-algebra. We prove the existence of quasi-invariant, completely positive and contractive lifts for equivariant, completely positive and contractive maps from A into a separable, quotient $C^*$-algebra. Along the way, we construct the Busby invariant for G-actions.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akemann, C., Pedersen, G. and Tomiyama, J.. Multipliers of $C^*$ -algebras. J. Funct. Anal. 13 (1973), 277301.10.1016/0022-1236(73)90036-0CrossRefGoogle Scholar
Arveson, W.. A note on essentially normal operators. Proc. Roy. Irish Acad. Sect. A 74 (1974), 143–146. Spectral Theory Symposium (Trinity College, Dublin, 1974).Google Scholar
Arveson, W.. Notes on extensions of $C^*$ -algebras. Duke Math. J. 44 (1977), 329355.10.1215/S0012-7094-77-04414-3CrossRefGoogle Scholar
Bauval, A.. RKK(X)-nucléarité (d’après G. Skandalis). K-Theory 13 (1998), 23–40.Google Scholar
Blanchard, E.. Déformations de $C^*$ -algèbres de Hopf. Bull. Soc. Math. France 124 (1996), 141215.10.24033/bsmf.2278CrossRefGoogle Scholar
Blanchard, E.. Subtriviality of continuous fields of nuclear $C^*$ -algebras. J. Reine Angew. Math. 489 (1997), 133149.Google Scholar
Borys, C. 2020. The Furstenberg boundary of a groupoid.Google Scholar
Brown, L.. Continuity of actions of groups and semigroups on Banach spaces. J. London Math. Soc. (2) 62 (2000), 107116.10.1112/S0024610700001058CrossRefGoogle Scholar
Brown, L., Douglas, R. and Fillmore, P.. Extensions of $C^*$ -algebras and K-homology. Ann. of Math. (2) 105 (1977), 265324.10.2307/1970999CrossRefGoogle Scholar
Choi, M. and Effros, E.. The completely positive lifting problem for $C^*$ -algebras. Ann. of Math.(2) 104 (1976), 585609.10.2307/1970968CrossRefGoogle Scholar
Echterhoff, S. and Williams, D.. Crossed products by $C_0(X)$ -actions. J. Funct. Anal. 158 (1998), 113151.10.1006/jfan.1998.3295CrossRefGoogle Scholar
Fieux, E.. Classes caractéristiques d’une $\Pi$ -algèbre et suite spectrale en K-théorie bivariante. K-Theory 5 (1991), 7196.10.1007/BF00538880CrossRefGoogle Scholar
Forough, M. and Gardella, E. 2021. Equivariant bundles and absorption. https://doi.org/10.4171/jncg/625 CrossRefGoogle Scholar
Forough, M., Gardella, E., and Thomsen, K.. Asymptotic lifting for completely positive maps. J. Funct. Anal. 287 (12) (2024)l paper no. 110655, 34.Google Scholar
Gabe, J.. Lifting theorems for completely positive maps. J. Noncommutative Geom. 16 (2022), 391421.10.4171/jncg/479CrossRefGoogle Scholar
Gabe, J. and Szabó, G. 2022. The stable uniqueness theorem for equivariant Kasparov theory.Google Scholar
Gabe, J. and Szabó, G.. The dynamical Kirchberg-Phillips theorem. Acta Math. 232 (2024), 177.10.4310/ACTA.2024.v232.n1.a1CrossRefGoogle Scholar
Higson, N. and Kasparov, G.. E-theory and KK-theory for groups which act properly and isometrically on Hilbert space. Invent. Math. 144 (2001), 23–74.Google Scholar
Hirshberg, I., Rørdam, M. and Winter, W.. $C_{0}(X)$ -algebras, stability and strongly self-absorbing $C^*$ -algebras. Math. Ann. 339 (2007), 695732.10.1007/s00208-007-0129-8CrossRefGoogle Scholar
Kasparov, G.. The operator K-functor and extensions of $C^{\ast}$ -algebras. Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 571636, 719.Google Scholar
Kasparov, G.. Equivariant KK-theory and the Novikov conjecture. Invent. Math. 91 (1988), 147–201.Google Scholar
Kasparov, G. and Skandalis, G.. Groups acting on buildings, operator K-theory, and Novikov’s conjecture. K-Theory 4 (1991), 303337.10.1007/BF00533989CrossRefGoogle Scholar
Kirchberg, E.. Das nicht-kommutative Michael-Auswahlprinzip und die Klassifikation nicht-einfacher Algebren. In $C^*$ -algebras (Münster, 1999) (Springer, Berlin.2000), pp. 92–141.Google Scholar
Kirchberg, E. and Wassermann, S.. Operations on continuous bundles of $C^*$ -algebras. Math. Ann. 303 (1995), 677697.10.1007/BF01461011CrossRefGoogle Scholar
Le Gall, P.-Y.. Théorie de Kasparov équivariante et groupodes. I. K-Theory 16 (1999), 361390.10.1023/A:1007707525423CrossRefGoogle Scholar
Manuilov, V. and Thomsen, K.. E-theory is a special case of KK-theory. Proc. London Math. Soc.(3) 88 (2004), 455–478.10.1112/S0024611503014436CrossRefGoogle Scholar
Meyer, R. and Nest, R.. $C^*$ -algebras over topological spaces: the bootstrap class. Münster J. Math. 2 (2009), 215–252.Google Scholar
Michael, E.. Continuous selections. I. Ann. of Math.(2) 63 (1956), 361–382.10.2307/1969615CrossRefGoogle Scholar
Muhly, P. and Williams, D. 2008. Renault’s Equivalence theorem for Groupoid Crossed Products. New York. J. Math. NYJM Monogr. vol. 3 (State University of New York, University at Albany, Albany, NY, 2008).Google Scholar
Popescu, R.. Equivariant E-theory for groupoids acting on $C^*$ -algebras. J. Funct. Anal. 209 (2004), 247–292.Google Scholar
Proietti, V. and Yamashita, M.. Homology and K-theory of dynamical systems I. Torsion-free ample groupoids. Ergodic Theory Dynam. Systems 42 (2022), 2630–2660.Google Scholar
Raeburn, I. and Williams, D.. Pull-backs of $C^*$ -algebras and crossed products by certain diagonal actions. Trans. Amer. Math. Soc. 287 (1985), 755777.Google Scholar
Renault, J.. A Groupoid Approach to $C^*$ -algebras. Lecture Notes in Math. vol. 793 (Springer, Berlin, 1980).10.1007/BFb0091072CrossRefGoogle Scholar
Renault, J.. Représentation des produits croisés d’algèbres de groupodes. J. Operator Theory 18 (1987), 6797.Google Scholar
Rieffel, M.. Continuous fields of $C^*$ -algebras coming from group cocycles and actions. Math. Ann. 283 (1989), 631643.10.1007/BF01442857CrossRefGoogle Scholar
Suzuki, Y.. Equivariant $\mathcal{O}_2$ -absorption theorem for exact groups. Compositio. Math. 157 (2021), 1492–1506.Google Scholar
Szabó, G.. Strongly self-absorbing $C^\ast$ -dynamical systems, III. Adv. Math. 316 (2017), 356380.10.1016/j.aim.2017.06.008CrossRefGoogle Scholar
Szabó, G.. Equivariant Kirchberg-Phillips-type absorption for amenable group actions. Comm. Math. Phys. 361 (2018), 1115–1154.Google Scholar
Szabó, G.. Strongly self-absorbing $C^*$ -dynamical systems. Trans. Amer. Math. Soc. 370 (2018), 99–130.Google Scholar
Szabó, G.. Strongly self-absorbing $C^*$ -dynamical systems. II. J. Noncommutative. Geom. 12 (2018), 369–406.Google Scholar
Thomsen, K.. Equivariant KK-theory and $C^*$ -extensions. K-Theory 19 (2000), 219249.10.1023/A:1007853018475CrossRefGoogle Scholar
Tikuisis, A., White, S. and Winter, W.. Quasidiagonality of nuclear $C^{*}$ -algebras. Ann. of Math.(2) 185 (2017), 229284.10.4007/annals.2017.185.1.4CrossRefGoogle Scholar
Tu, J.. La conjecture de Baum-Connes pour les feuilletages moyennables. K-Theory 17 (1999), 215264.10.1023/A:1007744304422CrossRefGoogle Scholar
Williams, D.. Crossed Products of $C{^\ast}$ -algebras. Math. Surveys Monogr. vol. 134 (American Mathematical Society, Providence, RI, 2007).Google Scholar