Hostname: page-component-54dcc4c588-xh45t Total loading time: 0 Render date: 2025-09-21T14:32:39.426Z Has data issue: false hasContentIssue false

Artificial Intelligence and Firm Technological Diversification: Unveiling the Distinctions Between Related and Unrelated Domains

Published online by Cambridge University Press:  15 September 2025

Dong Wu
Affiliation:
School of Management, Zhejiang University, Hangzhou, P.R. China
Xiru Chen
Affiliation:
School of Management, Zhejiang University, Hangzhou, P.R. China
Jingwen Li*
Affiliation:
School of Management, Zhejiang University, Hangzhou, P.R. China
*
Corresponding author: Jingwen Li; Email: jingwen_li@zju.edu.cn

Abstract

Artificial intelligence (AI) is revolutionizing the way firms pursue technological diversification (TD), yet its distinct effects on related and unrelated diversification remain insufficiently explored. Based on the knowledge-based view, this study examines the distinct effects of AI on related and unrelated TD to elucidate AI’s specific role in facilitating both the optimization of existing knowledge and the exploration of new domains. Using a multi-period difference-in-differences model and panel data from China’s listed manufacturing firms (2013–2022), our empirical analysis demonstrates that AI significantly promotes firm TD, particularly in unrelated TD. Additionally, we identify that core-technology competence strengthens the positive effect of AI on unrelated TD, while knowledge stocks weaken it. These results contribute to the literature on TD by underscoring the role of AI. Practically, the study offers actionable insights for managers to harness AI in balancing exploration and exploitation within their TD strategies.

摘要

摘要

人工智能正在彻底改变企业追求技术多元化的方式, 然而其对相关和非相关多元化的独特影响尚未得到充分探索。基于知识基础观, 本研究考察了人工智能对相关和非相关技术多元化的独特影响, 以阐明人工智能在促进现有知识优化和新领域探索方面的具体作用。通过使用多期双重差分模型和中国上市制造企业(2013 - 2022年)的面板数据, 我们的实证分析表明, 人工智能显著促进了企业技术多元化, 特别是在非相关技术多元化方面。此外, 我们发现核心技术能力加强了人工智能对非相关技术多元化的积极影响, 而知识储备则削弱了这种影响。这些结果通过强调人工智能的作用, 为技术多元化的文献做出了贡献。实际上, 该研究为管理者在其技术多元化战略中利用人工智能平衡探索和开发提供了可行的见解。

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Association for Chinese Management Research.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agrawal, A., Gans, J., & Goldfarb, A. 2017. What to expect from artificial intelligence. MIT Sloan Management Review, 58(3): 2327.Google Scholar
Ahamad, R., & Mishra, K. N. 2024. Enhancing knowledge discovery and management through intelligent computing methods: A decisive investigation. Knowledge and Information Systems, 66(7): 37193771. https://doi.org/10.1007/s10115-024-02099-2CrossRefGoogle Scholar
Alavi, M., & Leidner, D. E. 2001. Review: Knowledge management and knowledge management systems: Conceptual foundations and research issues. MIS Quarterly, 25(1): 107136. https://doi.org/10.2307/3250961CrossRefGoogle Scholar
Aldieri, L., Makkonen, T., & Paolo Vinci, C. 2020. Environmental knowledge spillovers and productivity: A patent analysis for large international firms in the energy, water and land resources fields. Resources Policy, 69: . https://doi.org/10.1016/j.resourpol.2020.101877CrossRefGoogle Scholar
Apell, P., & Eriksson, H. 2021. Artificial intelligence (AI) healthcare technology innovations: The current state and challenges from a life science industry perspective. Technology Analysis & Strategic Management, 35(2): 179193. https://doi.org/10.1080/09537325.2021.1971188CrossRefGoogle Scholar
Ashenfelter, O., & Card, D. 1985. Using the longitudinal structure of earnings to estimate the effect of training programs. Review of Economics and Statistics, 67(4): . https://doi.org/10.2307/1924810CrossRefGoogle Scholar
Babina, T., Fedyk, A., He, A., & Hodson, J. 2024. Artificial intelligence, firm growth, and product innovation. Journal of Financial Economics, 151: . https://doi.org/10.1016/j.jfineco.2023.103745CrossRefGoogle Scholar
Belderbos, R., Leten, B., & Suzuki, S. 2023. International R&D and MNCs’ innovation performance: An integrated approach. Journal of International Management, 29(6): . https://doi.org/10.1016/j.intman.2023.101083CrossRefGoogle Scholar
Benassi, M., Grinza, E., Rentocchini, F. & Rondi, L. 2022. Patenting in 4IR technologies and firm performance. Industrial and Corporate Change, 31(1): 112136. https://doi.org/10.1093/icc/dtab041CrossRefGoogle Scholar
Bolívar-Ramos, M. T. 2017. The relation between R&D spending and patents: The moderating effect of collaboration networks. Journal of Engineering and Technology Management, 46: 2638. https://doi.org/10.1016/j.jengtecman.2017.11.001CrossRefGoogle Scholar
Bolli, T., Seliger, F., & Woerter, M. 2019. Technological diversity, uncertainty and innovation performance. Applied Economics, 52(17): 18311844. https://doi.org/10.1080/00036846.2019.1679345CrossRefGoogle Scholar
Boussioux, L., Lane, J. N., Zhang, M., Jacimovic, V., & Lakhani, K. R. 2024. The crowdless future? Generative AI and creative problem-solving. Organization Science, 35(5): 15891607. https://doi.org/10.1287/orsc.2023.18430CrossRefGoogle Scholar
Brem, A., Giones, F., & Werle, M. 2023. The AI digital revolution in innovation: A conceptual framework of artificial intelligence technologies for the management of innovation. IEEE Transactions on Engineering Management, 70(2): 770776. https://doi.org/10.1109/tem.2021.3109983CrossRefGoogle Scholar
Breschi, S., Lissoni, F., & Malerba, F. 2003. Knowledge-relatedness in firm technological diversification. Research Policy, 32(1): 6987. https://doi.org/10.1016/s0048-7333(02)00004-5CrossRefGoogle Scholar
Capaldo, A., Lavie, D., & Messeni Petruzzelli, A. 2016. Knowledge maturity and the scientific value of innovations. Journal of Management, 43(2): 503533. https://doi.org/10.1177/0149206314535442CrossRefGoogle Scholar
Carnabuci, G., & Operti, E. 2013. Where do firms’ recombinant capabilities come from? Intraorganizational networks, knowledge, and firms’ ability to innovate through technological recombination. Strategic Management Journal, 34(13): 15911613. https://doi.org/10.1002/smj.2084CrossRefGoogle Scholar
Ceccagnoli, M., Lee, Y.-N., & Walsh, J. P. 2024. Reaching beyond low-hanging fruit: Basic research and innovativeness. Research Policy, 53(1): . https://doi.org/10.1016/j.respol.2023.104912CrossRefGoogle Scholar
Ceipek, R., Hautz, J., Mayer, M. C. J. & Matzler, K. 2019. Technological diversification: A systematic review of antecedents, outcomes and moderating effects. International Journal of Management Reviews, 21(4): 466497. https://doi.org/10.1111/ijmr.12205CrossRefGoogle Scholar
Chatterjee, S., & Blocher, J. D. 1992. Measurement of firm diversification: Is it robust? Academy of Management Journal, 35(4): 874888. https://doi.org/10.2307/256320CrossRefGoogle Scholar
Chen, C.-J., Lin, B.-W., Lin, J.-Y. & Hsiao, Y. C. 2018. Technological diversity, knowledge flow and capacity, and industrial innovation. Technology Analysis & Strategic Management, 30(12): 13651377. https://doi.org/10.1080/09537325.2018.1472759CrossRefGoogle Scholar
Chen, Y.-S., Shih, C.-Y., & Chang, C.-H. (2012) The effects of related and unrelated technological diversification on innovation performance and corporate growth in the Taiwan’s semiconductor industry. Scientometrics, 92(1): 117134. https://doi.org/10.1007/s11192-012-0720-yCrossRefGoogle Scholar
Chiu, Y.-C., Lai, H.-C., Liaw, Y.-C. & Lee, T. Y. 2009. Technological scope: Diversified or specialized. Scientometrics, 82(1): 3758. https://doi.org/10.1007/s11192-009-0039-5CrossRefGoogle Scholar
Choi, J.-U., & Lee, C.-Y. 2022. The differential effects of basic research on firm R&D productivity: The conditioning role of technological diversification. Technovation, 118: . https://doi.org/10.1016/j.technovation.2022.102559CrossRefGoogle Scholar
Choi, M., & Lee, C.-Y. 2021. Technological diversification and R&D productivity: The moderating effects of knowledge spillovers and core-technology competence. Technovation, 104: . https://doi.org/10.1016/j.technovation.2021.102249CrossRefGoogle Scholar
Cockburn, I. M., Henderson, R., & Stern, S. 2019. The impact of artificial intelligence on innovation: An exploratory analysis. In Agrawal, A., Gans, J., & Goldfarb, A. (Eds.), The economics of artificial intelligence: An agenda(pp. 115148). Chicago, IL: University of Chicago Press. https://doi.org/10.7208/chicago/9780226613475.003.0004CrossRefGoogle Scholar
Duan, Y., Deng, Z., Liu, H., Yang, M., Liu, M. & Wang, X. 2022. Exploring the mediating effect of managerial ability on knowledge diversity and innovation performance in reverse cross-border M&As: Evidence from Chinese manufacturing corporations. International Journal of Production Economics, 247: . https://doi.org/10.1016/j.ijpe.2022.108434CrossRefGoogle Scholar
Duan, Y., Yang, M., Huang, L., Chin, T., Fiano, F., de Nuccio, E., & Zhou, L. 2022. Unveiling the impacts of explicit vs. tacit knowledge hiding on innovation quality: The moderating role of knowledge flow within a firm. Journal of Business Research, 139: 14891500. https://doi.org/10.1016/j.jbusres.2021.10.068CrossRefGoogle Scholar
Ebel, P., Söllner, M., Leimeister, J. M., Crowston, K. & de Vreede, G. J. 2021. Hybrid intelligence in business networks. Electronic Markets, 31(2): 313318. https://doi.org/10.1007/s12525-021-00481-4CrossRefGoogle Scholar
Estades, J., & Ramani, S. V. 1998. Technological competence and the influence of networks: A comparative analysis of new biotechnology firms in France and Britain. Technology Analysis & Strategic Management, 10(4): 483495. https://doi.org/10.1080/09537329808524329CrossRefGoogle Scholar
Ferrara, E. L., Chong, A., & Duryea, S. 2012. Soap operas and fertility: Evidence from Brazil. American Economic Journal: Applied Economics, 4(4): 131. https://doi.org/10.1257/app.4.4.1Google Scholar
Füller, J., Hutter, K., Wahl, J., Bilgram, V., & Tekic, Z. 2022. How AI revolutionizes innovation management – Perceptions and implementation preferences of AI-based innovators. Technological Forecasting and Social Change, 178: . https://doi.org/10.1016/j.techfore.2022.121598CrossRefGoogle Scholar
Galunic, D. C., & Rodan, S. 1998. Resource recombinations in the firm: Knowledge structures and the potential for Schumpeterian innovation. Strategic Management Journal, 19(12): 11931201. https://doi.org/10.1002/(SICI)1097-0266(1998120)19:12%3C1193:AID-SMJ5%3E3.0.CO;2-F3.0.CO;2-F>CrossRefGoogle Scholar
Garcia-Vega, M. 2006. Does technological diversification promote innovation? Research Policy, 35(2): 230246. https://doi.org/10.1016/j.respol.2005.09.006CrossRefGoogle Scholar
Granstrand, O., Bohlin, E., Oskarsson, C. & Sjöberg, N. 2007. External technology acquisition in large multi‐technology corporations. R&D Management, 22(2): 111134. https://doi.org/10.1111/j.1467-9310.1992.tb00801.xGoogle Scholar
Granstrand, O., & Sjölander, S. 1990. Managing innovation in multi-technology corporations. Research Policy, 19(1): 3560. https://doi.org/10.1016/0048-7333(90)90033-3CrossRefGoogle Scholar
Grant, R. M. 1996. Toward a knowledge‐based theory of the firm. Strategic Management Journal, 17(S2): 109122. https://doi.org/10.1002/smj.4250171110CrossRefGoogle Scholar
Grashof, N., & Kopka, A. 2022. Artificial intelligence and radical innovation: An opportunity for all companies? Small Business Economics, 61(2): 771797. https://doi.org/10.1007/s11187-022-00698-3CrossRefGoogle Scholar
Grimes, M., von Krogh, G., Feuerriegel, S., Rink, F. & Gruber, M. 2023. From scarcity to abundance: Scholars and scholarship in an age of generative artificial intelligence. Academy of Management Journal, 66(6): 16171624. https://doi.org/10.5465/amj.2023.4006CrossRefGoogle Scholar
Grzybowski, A., Pawlikowska-Lagod, K., & Lambert, W. C. 2024. A history of artificial intelligence. Clinics in Dermatology, 42(3): 221229. https://doi.org/10.1016/j.clindermatol.2023.12.016CrossRefGoogle ScholarPubMed
Gupta, A. K. 1990. Impact of technological intensity on related and unrelated diversification. The Journal of High Technology Management Research, 1(1): 5767. https://doi.org/10.1016/1047-8310(90)90013-tCrossRefGoogle Scholar
Haefner, N., Wincent, J., Parida, V. & Gassmann, O. 2021. Artificial intelligence and innovation management: A review, framework, and research agenda. Technological Forecasting and Social Change, 162: . https://doi.org/10.1016/j.techfore.2020.120392CrossRefGoogle Scholar
Henderson, R., & Cockburn, I. 1994. Measuring competence? Exploring firm effects in pharmaceutical research. Strategic Management Journal, 15(S1): 6384. https://doi.org/10.1002/smj.4250150906CrossRefGoogle Scholar
Huang, Y.-F., & Chen, C.-J. 2010. The impact of technological diversity and organizational slack on innovation. Technovation, 30(7-8): 420428. https://doi.org/10.1016/j.technovation.2010.01.004CrossRefGoogle Scholar
Hussain, M., Satti, F. A., Ali, S. I., Hussain, J., Ali, T., Kim, H. S., Yoon, K. H., Chung, T. & Lee, S. 2021. Intelligent knowledge consolidation: From data to wisdom. Knowledge-Based Systems, 234: . https://doi.org/10.1016/j.knosys.2021.107578CrossRefGoogle Scholar
Hutchinson, P. 2021. Reinventing innovation management: The impact of self-innovating artificial intelligence. IEEE Transactions on Engineering Management, 68(2): 628639. https://doi.org/10.1109/tem.2020.2977222CrossRefGoogle Scholar
Igna, I., & Venturini, F. 2023. The determinants of AI innovation across European firms. Research Policy, 52(2): . https://doi.org/10.1016/j.respol.2022.104661CrossRefGoogle Scholar
Jäger, S., Schoefer, B., & Heining, J. 2021. Labor in the boardroom. Quarterly Journal of Economics, 136(2): 669725. https://doi.org/10.1093/qje/qjaa038CrossRefGoogle Scholar
Jang, H., Kim, S., & Yoon, B. 2023. An eXplainable AI (XAI) model for text-based patent novelty analysis. Expert Systems with Applications, 231: . https://doi.org/10.1016/j.eswa.2023.120839CrossRefGoogle Scholar
Jarrahi, M. H., Askay, D., Eshraghi, A. & Smith, P. 2023. Artificial intelligence and knowledge management: A partnership between human and AI. Business Horizons, 66(1): 8799. https://doi.org/10.1016/j.bushor.2022.03.002CrossRefGoogle Scholar
Kakatkar, C., Bilgram, V., & Füller, J. 2020. Innovation analytics: Leveraging artificial intelligence in the innovation process. Business Horizons, 63(2): 171181. https://doi.org/10.1016/j.bushor.2019.10.006CrossRefGoogle Scholar
Kang, T., Baek, C., & Lee, J.-D. 2019. Effects of knowledge accumulation strategies through experience and experimentation on firm growth. Technological Forecasting and Social Change, 144: 169181. https://doi.org/10.1016/j.techfore.2019.04.003CrossRefGoogle Scholar
Kim, H., Lim, H., & Park, Y. 2009. How should firms carry out technological diversification to improve their performance? An analysis of patenting of Korean firms. Economics of Innovation and New Technology, 18(8): 757770. https://doi.org/10.1080/10438590902793315CrossRefGoogle Scholar
Kim, J., Lee, C.-Y., & Cho, Y. 2016. Technological diversification, core-technology competence, and firm growth. Research Policy, 45(1): 113124. https://doi.org/10.1016/j.respol.2015.07.005CrossRefGoogle Scholar
Klette, T. J., & Kortum, S. 2004. Innovating firms and aggregate innovation. Journal of Political Economy, 112(5): 9861018. https://doi.org/10.1086/422563CrossRefGoogle Scholar
Kogut, B., & Zander, U. 1992. Knowledge of the firm, combinative capabilities, and the replication of technology. Organization Science, 3(3): 383397. https://doi.org/10.1287/orsc.3.3.383CrossRefGoogle Scholar
Kretschmer, T., & Symeou, P. C. 2024. Absorptive capacity components: Performance effects in related and unrelated diversification. Long Range Planning, 57(2): . https://doi.org/10.1016/j.lrp.2024.102416CrossRefGoogle Scholar
Kucharska, W., & Erickson, G. S. 2023. Tacit knowledge acquisition & sharing, and its influence on innovations: A Polish/US cross-country study. International Journal of Information Management, 71: . https://doi.org/10.1016/j.ijinfomgt.2023.102647CrossRefGoogle Scholar
Lai, H.-C. 2015. When is betweenness centrality useful to firms pursuing technological diversity? An internal-resources view. Technology Analysis & Strategic Management, 28(5): 507523. https://doi.org/10.1080/09537325.2015.1105949CrossRefGoogle Scholar
Lai, H.-C., & Weng, C. S. 2014. Accessing external technological knowledge for technological development: When technological knowledge distance meets slack resources. IEEE Transactions on Engineering Management, 61(1): 8089. https://doi.org/10.1109/tem.2013.2259831CrossRefGoogle Scholar
Lanzolla, G., Pesce, D., & Tucci, C. L. 2020. The digital transformation of search and recombination in the innovation function: Tensions and an integrative framework. Journal of Product Innovation Management, 38(1): 90113. https://doi.org/10.1111/jpim.12546CrossRefGoogle Scholar
Lee, C.-Y., Huang, Y.-C., & Chang, C.-C. 2017. Factors influencing the alignment of technological diversification and firm performance. Management Research Review, 40(4): 451470. https://doi.org/10.1108/mrr-03-2016-0071CrossRefGoogle Scholar
Leonard-Barton, D. 1992. Core capabilities and core rigidities: A paradox in managing new product development. Strategic Management Journal, 13(S1): 111125. https://doi.org/10.1002/smj.4250131009CrossRefGoogle Scholar
Li, C., Xu, Y., Zheng, H., Han, H. & Zeng, L. 2023. Artificial intelligence, resource reallocation, and corporate innovation efficiency: Evidence from China’s listed companies. Resources Policy, 81: . https://doi.org/10.1016/j.resourpol.2023.103324CrossRefGoogle Scholar
Li, X., Feng, F., Cao, S., & Shen, X. 2020. Inventor cooperation network effects on technology diversification: The moderating role of intellectual property protection. Technology Analysis & Strategic Management, 32(9): 11131127. https://doi.org/10.1080/09537325.2020.1743824CrossRefGoogle Scholar
Liebowitz, J. 2001. Knowledge management and its link to artificial intelligence. Expert Systems with Applications, 20(1): 16. https://doi.org/10.1016/S0957-4174(00)00044-0CrossRefGoogle Scholar
Liu, J., Zhang, Z., Feng, Y., Hu, H., Yu, Y., Qiu, L., Liu, H., Guo, Z., Huang, J., Du, C., and Qiu, J. 2020. Molecular detection of the mcr genes by multiplex PCR. Infection and Drug Resistance, 13: 34633468. https://doi.org/10.2147/IDR.S256320CrossRefGoogle ScholarPubMed
Liu, Q., 2022. Analysis of collaborative driving effect of artificial intelligence on knowledge innovation management. Scientific Programming, 2022: 18. https://doi.org/10.1155/2022/8223724Google Scholar
Lou, B., & Wu, L. 2021. AI on drugs: Can artificial intelligence accelerate drug development? Evidence from a large-scale examination of bio-pharma firms. MIS Quarterly, 45(3): 14511482. https://doi.org/10.25300/misq/2021/16565CrossRefGoogle Scholar
Lu, Y., Xiong, X., Zhang, W., Hu, H., Yu, Y., Qiu, L., Liu, H., Guo, Z., Huang, J., Du, C. & Qiu, J. 2020. Research on classification and similarity of patent citation based on deep learning. Scientometrics, 123(2): 813839. https://doi.org/10.1007/s11192-020-03385-wCrossRefGoogle Scholar
Ma, S., & Fan, S. Q. 2024. A deep learning-based knowledge graph framework for intelligent management scheduling decision of enterprises. Journal of Circuits, Systems, and Computers, 33(9): . https://doi.org/10.1142/S0218126624501640CrossRefGoogle Scholar
McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G. S., Darzi, A. & Etemadi, M., Garcia-Vicente, F., Gilbert, F. J., Halling-Brown, M., Hassabis, D., Jansen, S., Karthikesalingam, A., Kelly, C. J., King, D., Ledsam, J. R., Melnick, D. et al 2020. International evaluation of an AI system for breast cancer screening. Nature, 577(7788): 8994. https://doi.org/10.1038/s41586-019-1799-6CrossRefGoogle ScholarPubMed
Mercier-Laurent, E. 2020. The future of AI or AI for the future. In Strous, L., Johnson, R., Grier, D. A. & Swade, D. (Eds. 555 ), Unimagined futures – ICT opportunities and challenges: 2037. Cham: Springer. https://doi.org/10.1007/978-3-030-64246-4_3CrossRefGoogle Scholar
Miller, D. J. 2006. Technological diversity, related diversification, and firm performance. Strategic Management Journal, 27(7): 601619. https://doi.org/10.1002/smj.533CrossRefGoogle Scholar
Miric, M., Jia, N., & Huang, K. G. 2022. Using supervised machine learning for large‐scale classification in management research: The case for identifying artificial intelligence patents. Strategic Management Journal, 44(2): 491519. https://doi.org/10.1002/smj.3441CrossRefGoogle Scholar
Muhlroth, C., & Grottke, M. 2022. Artificial intelligence in innovation: How to spot emerging trends and technologies. IEEE Transactions on Engineering Management, 69(2): 493510. https://doi.org/10.1109/tem.2020.2989214CrossRefGoogle Scholar
Nag, R., & Gioia, D. A. 2012. From common to uncommon knowledge: Foundations of firm-specific use of knowledge as a resource. Academy of Management Journal, 55(2): 421457. https://doi.org/10.5465/amj.2008.0352CrossRefGoogle Scholar
Nooteboom, B., Van Haverbeke, W., Duysters, G. Gilsing, V. and Van den Oord, A. 2007. Optimal cognitive distance and absorptive capacity. Research Policy, 36(7): 10161034. https://doi.org/10.1016/j.respol.2007.04.003CrossRefGoogle Scholar
Nylund, P. A., Ferras-Hernandez, X., & Brem, A. 2018. Automating profitably together: Is there an impact of open innovation and automation on firm turnover? Review of Managerial Science, 14(1): 269285. https://doi.org/10.1007/s11846-018-0294-zCrossRefGoogle Scholar
Patel, P., & Pavitt, K. 1997. The technological competencies of the world’s largest firms: Complex and path-dependent, but not much variety. Research Policy, 26(2): 141156. https://doi.org/10.1016/s0048-7333(97)00005-xCrossRefGoogle Scholar
Prusak, Laurence.1997. Knowledge in Organisations.1st Edition.London: Routledge..Accessed: 3 November 2009.Google Scholar
Raisch, S., & Fomina, K. 2024. Combining human and artificial intelligence: Hybrid problem-solving in organizations. Academy of Management Review 50 2, https://doi.org/10.5465/amr.2021.0421Google Scholar
Spender, J. C. 2014. Making knowledge the basis of a dynamic theory of the firm. Strategic Management Journal, 17(S2): 4562. https://doi.org/10.1002/smj.4250171106CrossRefGoogle Scholar
Tang, C., Liu, L., & Xiao, X. 2023. How do firms’ knowledge base and industrial knowledge networks co-affect firm innovation? IEEE Transactions on Engineering Management, 70(1): 2939. https://doi.org/10.1109/tem.2021.3051610CrossRefGoogle Scholar
Teece, D. J., Pisano, G., & Shuen, A. 1997. Dynamic capabilities and strategic management. Strategic Management Journal, 18(7): 509533. https://doi.org/10.1002/(SICI)1097-0266(1998120)19:12%3C1193::AID-SMJ5%3E3.0.CO;2-F3.0.CO;2-Z>CrossRefGoogle Scholar
Tian, H., Zhao, L., Yunfang, L. & Wang, W. 2023. Can enterprise green technology innovation performance achieve “corner overtaking” by using artificial intelligence? – Evidence from Chinese manufacturing enterprises. Technological Forecasting and Social Change, 194: . https://doi.org/10.1016/j.techfore.2023.122732CrossRefGoogle Scholar
Townsend, D. M., Hunt, R. A., Rady, J., Manocha, P. & Jin, J. H. 2024. Are the futures computable? Knightian uncertainty and artificial intelligence. Academy of Management Review 50 2, https://doi.org/10.5465/amr.2022.0237Google Scholar
Tsouri, M., Hansen, T., Hanson, J. & Steen, M. 2022. Knowledge recombination for emerging technological innovations: The case of green shipping. Technovation, 114: . https://doi.org/10.1016/j.technovation.2022.102454CrossRefGoogle Scholar
van Rijnsoever, F. J., van den Berg, J., Koch, J. & Hekkert, M. P. 2015. Smart innovation policy: How network position and project composition affect the diversity of an emerging technology. Research Policy, 44(5): 10941107. https://doi.org/10.1016/j.respol.2014.12.004CrossRefGoogle Scholar
Wang, H., & Qiu, F. 2023. AI adoption and labor cost stickiness: Based on natural language and machine learning. Information Technology and Management 26 163-184, https://doi.org/10.1007/s10799-023-00408-9CrossRefGoogle Scholar
Wang, K.-L., Sun, -T.-T., & Xu, R.-Y. 2022. The impact of artificial intelligence on total factor productivity: Empirical evidence from China’s manufacturing enterprises. Economic Change and Restructuring, 56(2): 11131146. https://doi.org/10.1007/s10644-022-09467-4CrossRefGoogle Scholar
Wang, L., Zhou, Y., & Chiao, B. 2023. Robots and firm innovation: Evidence from Chinese manufacturing. Journal of Business Research, 162: . https://doi.org/10.1016/j.jbusres.2023.113878CrossRefGoogle Scholar
Wang, S., and Xiao, X. 2017. The relationship between institutional environment and enterprise’s technology innovation performance – The visual angle based on MOA theoretical model. MATEC Web of Conferences, . https://doi.org/10.1051/matecconf/201710005027Google Scholar
Wu, L., Hitt, L., & Lou, B. 2020. Data analytics, innovation, and firm productivity. Management Science, 66(5): 20172039. https://doi.org/10.1287/mnsc.2018.3281CrossRefGoogle Scholar
Wu, L., Lou, B., & Hitt, L. M. 2024. Innovation strategy after IPO: How AI analytics spurs innovation after IPO. Management Science 71 3 1865-1888, https://doi.org/10.1287/mnsc.2022.01559Google Scholar
Wu, X., & Huo, Y. 2023. Impact of the introduction of service robots on consumer satisfaction: Empirical evidence from hotels. Technological Forecasting and Social Change, 194: . https://doi.org/10.1016/j.techfore.2023.122718CrossRefGoogle Scholar
Xie, M., Ding, L., Xia, Y., Guo, J., Pan, J. & Wang, H. 2021. Does artificial intelligence affect the pattern of skill demand? Evidence from Chinese manufacturing firms. Economic Modelling, 96: 295309. https://doi.org/10.1016/j.econmod.2021.01.009CrossRefGoogle Scholar
Yablonsky, S. A. 2020. AI-driven digital platform innovation. Technology Innovation Management Review, 10(10): 415. https://doi.org/10.22215/timreview/1392CrossRefGoogle Scholar
Yao, J., Zhang, K., Guo, L., and Feng, X. 2024. How can AI improve enterprise productivity? – From the perspective of skill structure adjustment of labor force. Journal of Management World, 40(02): . https://doi.org/10.19744/j.cnki.11-1235/f.2024.0018Google Scholar
Yayavaram, S., & Chen, W. R. 2014. Changes in firm knowledge couplings and firm innovation performance: The moderating role of technological complexity. Strategic Management Journal, 36(3): 377396. https://doi.org/10.1002/smj.2218CrossRefGoogle Scholar
Yazici, I., Beyca, O. F., Gurcan, O. F., Zaim, H., Delen, D. and Zaim, S. 2020. A comparative analysis of machine learning techniques and fuzzy analytic hierarchy process to determine the tacit knowledge criteria. Annals of Operations Research, 308(1–2): 753776. https://doi.org/10.1007/s10479-020-03697-3CrossRefGoogle Scholar
Zabala-Iturriagagoitia, J. M., Gómez, I. P., & Larracoechea, U. A. 2020. Technological diversification: A matter of related or unrelated varieties? Technological Forecasting and Social Change, 155: . https://doi.org/10.1016/j.techfore.2020.119997CrossRefGoogle Scholar
Zahra, S. A., & George, G. 2002. Absorptive capacity: A review, reconceptualization, and extension. Academy of Management Review, 27(2): 185203. https://doi.org/10.2307/4134351CrossRefGoogle Scholar
Zaoui Seghroucheni, O., Lazaar, M., & Al Achhab, M. 2025. Systematic review and framework for AI-driven tacit knowledge conversion methods and machine learning algorithms for ontology-based chatbots in e-learning platforms. International Journal of Interactive Mobile Technologies, 19(01): 126139. https://doi.org/10.3991/ijim.v19i01.51051CrossRefGoogle Scholar
Zhang, G., & Tang, C. 2018. How R&D partner diversity influences innovation performance: An empirical study in the nano-biopharmaceutical field. Scientometrics, 116(3): 14871512. https://doi.org/10.1007/s11192-018-2831-6CrossRefGoogle Scholar
Zhang, Y., Shang, L., Huang, L., Porter, A. L., Zhang, G., and Zhu, D. 2016. A hybrid similarity measure method for patent portfolio analysis. Journal of Informetrics, 10(4): 11081130. https://doi.org/10.1016/j.joi.2016.09.006CrossRefGoogle Scholar
Zhou, K., Luo, H. T., Ye, D. Y., and Tao, Y. 2022. The power of anti-corruption in environmental innovation: Evidence from a quasi-natural experiment in China. Technological Forecasting and Social Change, 182: . https://doi.org/10.1016/j.techfore.2022.121831CrossRefGoogle Scholar
Zhu, X., Yang, N., Zhang, M., and Wang, Y. 2024. Firm innovation: Technological boundary-spanning search and knowledge base and distance. Management Decision, 62(1): 326351. https://doi.org/10.1108/md-02-2023-0238CrossRefGoogle Scholar