Hostname: page-component-6bb9c88b65-x9fsb Total loading time: 0 Render date: 2025-07-23T23:22:16.946Z Has data issue: false hasContentIssue false

Chaenothecopsis inconspicua, a new sporodochioid lichenicolous fungus growing on Lecanora expallens

Published online by Cambridge University Press:  21 May 2025

Henk-Jan van der Kolk*
Affiliation:
Dutch Bryological and Lichenological Association, Utrecht, The Netherlands
Damien Ertz
Affiliation:
Meise Botanic Garden, Department Research, BE-1860 Meise, Belgium Fédération Wallonie-Bruxelles, Service général de l’Enseignement supérieur et de la Recherche scientifique, BE-1080 Bruxelles, Belgium
Bart Hessen
Affiliation:
Heideweg 10, 9824 TJ Noordwijk (GR), The Netherlands
Jannes Boers
Affiliation:
Dutch Bryological and Lichenological Association, Utrecht, The Netherlands
*
Corresponding author: Henk-Jan van der Kolk; Email: henk-janvdkolk@hotmail.com

Abstract

Chaenothecopsis inconspicua is a new anamorphic lichenicolous fungus forming black sporodochia on the thallus of Lecanora expallens. Molecular analysis demonstrates that the new species is positioned in the Mycocaliciales. Although a remarkable diversity of anamorphs was already recognized in Mycocaliciales, it is the first species within this order known to produce sporodochioid conidiomata. Chaenothecopsis inconspicua is currently known from several localities in the northern half of the Netherlands, most often on old Quercus robur trees in villages. A key to the lichenicolous fungi inhabiting Lecanora expallens is provided.

Information

Type
Standard Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of the British Lichen Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Darriba, D, Taboada, GL, Doallo, R and Posada, D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.CrossRefGoogle ScholarPubMed
Diederich, P (1986) Lichenicolous fungi from the Grand Duchy of Luxembourg and surrounding areas. Lejeunia 119, 126.Google Scholar
Diederich, P, Lawrey, JD, Sikaroodi, M, van den Boom, PP and Ertz, D (2012) Briancoppinsia, a new coelomycetous genus of Arthoniaceae (Arthoniales) for the lichenicolous Phoma cytospora, with a key to this and similar taxa. Fungal Diversity 52, 112.CrossRefGoogle Scholar
Diederich, P, Zhurbenko, MP, Pinault, P, Berger, F, Etayo, J and van den Boom, P (2024a) Minutoexcipula . Flora of Lichenicolous Fungi 2, 287309.Google Scholar
Diederich, P, Etayo, J and Zhurbenko, MP (2024b) Feltgeniomyces . Flora of Lichenicolous Fungi 2, 191198.Google Scholar
Ertz, D, Tehler, A, Irestedt, M, Frisch, A, Thor, G and van den Boom, P (2015) A large-scale phylogenetic revision of Roccellaceae (Arthoniales) reveals eight new genera. Fungal Diversity 70, 3153.CrossRefGoogle Scholar
Ertz, D, Sanderson, N, Łubek, A and Kukwa, M (2018) Two new species of Arthoniaceae from old-growth European forests, Arthonia thoriana and Inoderma sorediatum, and a new genus for Schismatomma niveum. Lichenologist 50, 161172.CrossRefGoogle Scholar
Ertz, D, Diederich, P, Lendemer, J, Komposch, H, Harris, RC and Huereca, A (2023) A remarkable and widespread new lichenicolous species of Mycocalicium (Sphinctrinaceae) producing campylidia-like conidiomata and appendiculate conidia. Plant and Fungal Systematics 68, 411423.CrossRefGoogle Scholar
Hawksworth, DL (1981) The lichenicolous Coelomycetes. Bulletin of the British Museum (Natural History), Botany Series 9, 198.Google Scholar
Hawksworth, DL and Dyko, BJ (1979) Lichenodiplis and Vouauxiomyces: two new genera of lichenicolous Coelomycetes. Lichenologist 11, 5161.CrossRefGoogle Scholar
Huelsenbeck, JP and Ronquist, F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754755.CrossRefGoogle Scholar
Maddison, WP and Maddison, DR (2015) Mesquite: a modular system for evolutionary analysis, version 3.04. [WWW resource] URL http://mesquiteproject.org.Google Scholar
Mason-Gamer, RJ and Kellogg, EA (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Systematic Biology 45, 524545.CrossRefGoogle Scholar
Miadlikowska, J, McCune, B and Lutzoni, F (2002) Pseudocyphellaria perpetua, a new lichen from western North America. Bryologist 105, 110.CrossRefGoogle Scholar
Miller, MA, Pfeiffer, W and Schwartz, T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE) , 14 November 2010, New Orleans, Louisiana, pp. 18.Google Scholar
Rambaut, A (2012) FigTree v.1.4.2. [WWW resource] URL http://tree.bio.ed.ac.uk/software/figtree/Google Scholar
Reeb, V, Lutzoni, F and Roux, C (2004) Contribution of RPB2 to multilocus phylogenetic studies of the Euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Molecular Phylogenetics and Evolution 32, 10361060.CrossRefGoogle ScholarPubMed
Rikkinen, J (2003) Chaenothecopsis nigripunctata, a remarkable new species of resinicolous Mycocaliciaceae from western North America. Mycologia 95, 98103.CrossRefGoogle ScholarPubMed
Ronquist, F and Huelsenbeck, JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.CrossRefGoogle ScholarPubMed
Samuels, GJ and Buchanan, DE (1983) Ascomycetes of New Zealand 5. Mycocalicium schefflerae sp. nov., its ascal ultrastructure and Phialophora anamorph. New Zealand Journal of Botany 21, 163169.CrossRefGoogle Scholar
Stamatakis, A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 13121313.CrossRefGoogle ScholarPubMed
Thiyagaraja, V, Ertz, D, Lücking, R, Wanasinghe, DN, Aptroot, A, Cáceres, MES, Hyde, KD, Tapingkae, W and Cheewangkoon, R (2022) Taxonomic and phylogenetic reassessment of Pyrgidium (Mycocaliciales) and investigation of ascospore morphology. Journal of Fungi 8, 966.CrossRefGoogle ScholarPubMed
Tibell, L (1990) Anamorphs in Mycocalicium albonigrum and M. subtile (Caliciales). Nordic Journal of Botany 10, 221242.CrossRefGoogle Scholar
Tibell, L (1991) The Asterophoma anamorph of Chaenothecopsis savonica and its hyphomycetous synanamorph. Canadian Journal of Botany 69, 24272433.CrossRefGoogle Scholar
Tibell, L (1993) The anamorphs of Chaenothecopsis viridireagens. Nordic Journal of Botany 13, 331335.CrossRefGoogle Scholar
Tibell, L (1995) The anamorph of Chaenothecopsis debilis. Mycologia 87, 245252.CrossRefGoogle Scholar
Tibell, L (1997) Anamorphs in mazaediate lichenized fungi and the Mycocaliciaceae (‘Caliciales s. lat.’). Symbolae Botanicae Upsalienses 32, 291322.Google Scholar
Tibell, L and Constantinescu, O (1991) Catenomycopsis rosea gen. et sp. nov. (Hyphomycetes), anamorph of Chaenothecopsis haematopus. Mycological Research 95, 556560.CrossRefGoogle Scholar
Tibell, L and Vinuesa, M (2005) Chaenothecopsis in a molecular phylogeny based on nuclear rDNA ITS and LSU sequences. Taxon 54, 427442.CrossRefGoogle Scholar
Tibell, L and Wedin, M (2000) Mycocaliciales, a new order for nonlichenized calicioid fungi. Mycologia 92, 577581.CrossRefGoogle Scholar
Tuovila, H (2013) Sticky business – diversity and evolution of Mycocaliciales (Ascomycota) on plant exudates. Publications in Botany from the University of Helsinki 44, 1142.Google Scholar
Tuovila, H, Larsson, PER and Rikkinen, J (2012) Three resinicolous North American species of Mycocaliciales in Europe with a re-evaluation of Chaenothecopsis oregana Rikkinen. Karstenia 51, 3749.CrossRefGoogle Scholar
Tuovila, H, Schmidt, AR, Beimforde, C, Dörfelt, H, Grabenhorst, H and Rikkinen, J (2013) Stuck in time – a new Chaenothecopsis species with proliferating ascomata from Cunninghamia resin and its fossil ancestors in European amber. Fungal Diversity 58, 199213.CrossRefGoogle Scholar
van der Kolk, H, Earland-Bennett, PM and Hawksworth, DL (2020) A new Psammina species with exceptionally long conidial arms, with a key to the ten known species of the genus. Lichenologist 52, 337343.CrossRefGoogle Scholar
van der Kolk, H, Ertz, D and Diederich, P (2024) Psammina . Flora of Lichenicolous Fungi 2, 331339.Google Scholar
van Dobben, HF and de Bakker, AJ (1996) Re-mapping epiphytic lichen biodiversity in The Netherlands: effects of decreasing SO2 and increasing NH3. Acta Botanica Neerlandica 45, 5571.CrossRefGoogle Scholar
Vilgalys, R and Hester, M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172, 42384246.CrossRefGoogle ScholarPubMed
White, TJ, Bruns, TD, Lee, SB and Taylor, JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, MA, Gelfand, DH, Sninsky, JJ and White, TJ (eds), PCR Protocols: a Guide to Methods and Applications. New York: Academic Press, pp. 315322.Google Scholar