Hostname: page-component-54dcc4c588-xh45t Total loading time: 0 Render date: 2025-10-06T17:35:31.219Z Has data issue: false hasContentIssue false

Warm-dense-matter studies using pulse-powered wire discharges in water

Published online by Cambridge University Press:  21 September 2006

TORU SASAKI
Affiliation:
Department of Energy Sciences, Tokyo Institute of Technology, Yokohama, Japan
YUURI YANO
Affiliation:
Department of Energy Sciences, Tokyo Institute of Technology, Yokohama, Japan
MITSUO NAKAJIMA
Affiliation:
Department of Energy Sciences, Tokyo Institute of Technology, Yokohama, Japan
TOHRU KAWAMURA
Affiliation:
Department of Energy Sciences, Tokyo Institute of Technology, Yokohama, Japan
KAZUHIKO HORIOKA
Affiliation:
Department of Energy Sciences, Tokyo Institute of Technology, Yokohama, Japan

Abstract

Dense plasmas are produced using exploding wire discharges in water. Evolutions of radius, electrical conductivity, temperature of plasma and a shock wave in water accompanied with the explosion, are measured. Conductivities of aluminum, copper, and tungsten are compared with theoretical ones. To evaluate the equation of state, trajectories of the shock wave and the plasma boundary are compared with numerical calculations. Results show that the hydrodynamic behaviors are sensitive to the models of equation of state. Controllability of warm dense state in density-temperature diagram is discussed from the voltage-current characteristics of the wire discharges.

Information

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Brysk, H., Campbell, P.M. & Hammerling, P. (1975). Thermal conduction in laser fusion. Plasma Phys. 17, 473484.CrossRefGoogle Scholar
Clerouin, J., Renaudin, P., Laudernet, Y., Noiret, P. & Desjerlais, M.P. (2005). Electrical conductivity and equation-of-state study of warm dense copper: Measurements and quantum molecular dynamics calculation. Phys. Rev. B 71, 064203-1-5.Google Scholar
Constantin, C., Dewald, E., Niemann, C., Hoffmann, D.H.H., Udrea, S., Varentsov, D., Jacoby, V., Funk, U.N., Neuner, U. & Tauschwitz, A. (2004). Cold compression of solid matter by intense heavy-ion-beam-generated pressure waves. Laser Part. Beams 22, 5963.Google Scholar
Davidson, R.C. (2003). Frontiers in High Energy Density Physics. Washington, DC: The National Academies Press.Google Scholar
DeSilva, A.W. & Katsouros, J.D. (1999). Measurement of the electrical conductivity of metals in the vicinity of the critical point. Internat. J. Thermophys. 20, 126777.CrossRefGoogle Scholar
Desjerlais, M.P. (2001). Practical improvements to the lee-more conductivity near the metal-insulator transition. Contrib. Plasmas Phys. 41, 267270.Google Scholar
Dewald, E., Constantin, C., Udrea, S., Jacoby, J., Hoffmann, D.H.H., Niemann, C., Weiser, J., Tahir, N.A., Kozyreva, A., Shutov, A. & Tauschwitz, A. (2002). Studies of high energy density in matter driven by heavy ion beams in solid targets. Laser Part. Beams 20, 399403.Google Scholar
Grisham, L.R. (2004). Moderate energy ions for high energy density physics experiment. Phys. Plasmas 11, 57275729.CrossRefGoogle Scholar
Hammer, D.A. & Sinars, D.B. (2001). Single-wire explosion experiments relevant to the initial stages of wire array z pinches. Laser Part. Beams 19, 377391.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., Mintsev, V., Tahir, N.A., Varentsov, D. & Wieser, J. (2002). Unique capabilities of an intense heavy ion beams as a tool for equation-of-state studies. Phys. Plasmas 9, 36513654.CrossRefGoogle Scholar
Horioka, K., Nakajima, M., Sasaki, T. & Mizoguchi, T. (2004). Semi-Empirical Modeling of Exploding Wire Plasma in Water for Study on Strongly Coupled Plasma. Proc. 15th Int. Conf. on High Power Particle Beams, St. Petersburg, Russia, 894–897. D.V. Efremov Institute.Google Scholar
Ichimaru, S., Iyetomi, H. & Tanaka, S. (1987). Statistical physics of dense plasmas: Thermodynamics, transport coefficients and dynamic correlation. Phys. Rep. 149, 91205.CrossRefGoogle Scholar
Kim, D.-K. & Kim, I. (2003). Calculation of ionization balance and electrical conductivity in nonideal aluminum plasma. Phys. Rev. E 68, 056410-1-6.Google Scholar
Krisch, I. & Kunze, H.J. (1998). Measurements of electrical conductivity and the mean ionization state of nonideal aluminum plasmas. Phys. Rev. E 58, 65576564.Google Scholar
Kuhlbrodt, S., Holst, B. & Redmer, R. (2005). COMPTRA04: A program package to calculate composition and transport coefficients in dense plasmas. Contrib. Plasmas Phys. 45, 7388.CrossRefGoogle Scholar
Lampe, M. (1968). Transport theory of a partially degenerate plasma. Phys. Rev. 174, 276280.Google Scholar
Lee, R.W., Baldis, H.A., Cauble, R.C., Landen, O.L., Wark, J.S., Ng, A., Rose, S.J., Lewis, C., Riley, D., Gauthier, J.C. & Audebert, P. (2002). Plasma-based studies with intense X-ray and particle beam sources. Laser Part. Beams 20, 527536.Google Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.CrossRefGoogle Scholar
More, R.M. (1981). Atomic physics in inertial confinement fusion. Part I & Part II. Report No. UCRL-84991. Livermore, CA: Lawrence Livermore National Laboratory.Google Scholar
More, R.M., Warren, K.H., Young, D.A. & Zimmerman, G.B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 30593078.Google Scholar
Ng, A., Ao, T., Perrot, F., Dharma-Wardana, M.W.C. & Foord, M.E. (2005). Idealized slab plasma approach for the study of warm dense matter. Laser Part. Beams 23, 527537.Google Scholar
Renaudin, P., Blancard, C., Faussurier, G. & Noiret, P. (2002). Combined pressure and electrical-resistivity measurements of warm dense aluminum and titanium plasmas. Phys. Rev. Lett. 88, 215001-1-4.Google Scholar
Saleem, S., Haum, J. & Kunze, H.J. (2001). Electrical conductivity measurements of strongly coupled W plasmas. Phys. Rev. E 64, 056403-1-6.Google Scholar
Sasaki, T., Nakajima, M., Kawamura, T. & Horioka, K. (2005). Semiempirical approach to pulsed wire discharges in water as a method for warm dense matter studies. J. Plasmas Fus. Res. 81, 965966.CrossRefGoogle Scholar
Spitzer, L., Jr. & Harm, R. (1953). Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977981.Google Scholar
Tahir, N.A., Udrea, S., Deutsch, C., Fortov, V.E., Grandjouan, G., Gryaznov, V., Hoffmann, D.H.H., Hulsmann, P., Kirk, M., Lomonosov, I.V., Piriz, A.R., Shutov, A., Spiller, P., Temporal, M. & Varentsov, D. (2004). Target heating in high-energy-density matter experiments at the proposed GSI FAIR facility: Non-linear bunch rotation in SIS 100 and optimization of spot size and pulse length. Laser Part. Beams 22, 485493.Google Scholar
Temporal, M., Lopez-Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2005). Compression of a cylindrical hydrogen sample driven by an intense co-axial heavy ion beam. Laser Part. Beams 23, 137142.Google Scholar
Wagner, W. & Pruss, A. (2002). The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387535.CrossRefGoogle Scholar
Xiao, F., Yabe, T., Nizam, G. & Ito, T. (1996). Constructing a multi-dimensional oscillation preventing scheme for the advection equation by a rational function. Comput. Phys. Comm. 94, 103118.CrossRefGoogle Scholar
Yabe, T., Ogata, Y., Takizawa, K., Kawai, T., Segawa, A. & Sakurai, K. (2001). The next generation CIP as a conservative semi-Lagrangian solver for solid, liquid and gas. J. Comput. and App. Math. 149, 267277.CrossRefGoogle Scholar
Yoneda, H., Morikami, H., Ueda, K. & More, R.M. (2003). Ultrashort-Pulse Laser Ellipsometric Pump-Probe Experiments on Gold Targets. Phys. Rev. Lett. 91, 075004-1-4.Google Scholar
Zel'dovich, Y.B. & Raizer, Y.P. (1966). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. New York: Academic Press.Google Scholar