Hostname: page-component-54dcc4c588-scsgl Total loading time: 0 Render date: 2025-10-07T06:32:24.979Z Has data issue: false hasContentIssue false

Improved equation of state of metals in the liquid-vapor region

Published online by Cambridge University Press:  21 September 2006

A. RAY
Affiliation:
Theoretical Physics Division, Bhabha Atomic Research Center, Mumbal, India
M.K. SRIVASTAVA
Affiliation:
Theoretical Physics Division, Bhabha Atomic Research Center, Mumbal, India
G. KONDAYYA
Affiliation:
Theoretical Physics Division, Bhabha Atomic Research Center, Mumbal, India
S.V.G. MENON
Affiliation:
Theoretical Physics Division, Bhabha Atomic Research Center, Mumbal, India

Abstract

The existing “quotidian equation state” model, based on Thomas-Fermi theory, is modified so as to improve the low density region of phase diagram of metals. A scheme for estimating the critical parameters of liquid-vapor phase transition is proposed. The new model reproduces experimental critical isotherms to a good degree of accuracy. Furthermore, the proposed model is validated with thermodynamic data in the liquid-vapor co-existence region, including results on isobaric expansion as well as released isentropes.

Information

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Abdallah, J., Jr. (1984). Users manual for GRIZZLY. Report No. LA-10244-M. Los Alamos, NM: Los Alamos National Laboratory.Google Scholar
Al'tshuler, L.V., Bushmann, A.V., Zhernokletov, M.V., Zubarev, V.N., Leont'ev, A.A. & Fortov, V.E. (1980). Unloading isentropes of the equation of state of metals at high energy densities. Sov. Phys. JETP 51, 373.Google Scholar
Barnes, J.F. (1967). Statistical atom theory and the equation state of solids. Phys. Rev. 153, 269.CrossRefGoogle Scholar
Bushmann, A.V. & Fortov, V.E. (1983). Equation of state models for matter. Sov. Phys. Usp. 26, 465.CrossRefGoogle Scholar
Bushmann, A.V., Lomonosov, I.V. & Fortov, V.E. (1993). Sov. Tech. Rev. B. Therm. Rev. 5, 1.Google Scholar
Carnahan, N.F. & Starling, K.E. (1969). Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635.CrossRefGoogle Scholar
Dillon, I.G., Nelson, P.A. & Swanson, B.S. (1966). Measurement of densities and estimation of critical properties of the alkali metals. J. Chem. Phys. 44, 4229.CrossRefGoogle Scholar
Elieser, S., Ghatak, A.K. & Hora, H. (1986). An Introduction to Equations of state: Theory and Applications. Cambridge, UK: Cambridge University Press.Google Scholar
Feynman, R.P., Metropolis, N. & Teller, E. (1949). Equation of state of elements based on the generalized Fermi-Thomas theory. Phys. Rev. 75, 1561.CrossRefGoogle Scholar
Fortov, V.E. & Yakubov, L.T. (1999). Physics of Non-Ideal Plasmas. London, UK: World Scientific.CrossRefGoogle Scholar
Fucke, U. & Seydel, W. (1980). Improved experimental determination of critical-point data for tungsten. High Temp. High Pressures 12, 419.Google Scholar
Gathers, G.R. (1983a). Thermophysical properties of liquid copper and aluminum. Int. J. Thermophys. 4, 209.CrossRefGoogle Scholar
Gathers, G.R. (1983b). Correction of specific heat in isobaric expansion data. Int. J. Thermophys. 4, 149.CrossRefGoogle Scholar
Gathers, G.R. (1986). Dynamic methods for investigating thermophysical properties of matter at very high temperature and pressures. Rep. Prog. Phys. 49, 341.CrossRefGoogle Scholar
Gruneisen, E. (1912). Theorie des festen zustandes einatomiger element. Ann Phys 12, 257.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 47.CrossRefGoogle Scholar
Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., Mintsev, V., Tahir, N.A., Varentsov, D. & Wieser, J. (2002). Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies. Phys. Plasmas 9, 3651.Google Scholar
Hoover, W.G., Stell, G., Goldmark, E. & Degani, G.D. (1975). Generalized van der Waals equation of state. J. Chem. Phys. 63, 5434.CrossRefGoogle Scholar
Hornung, K. (1975). Liquid metal coexistence properties from corresponding states and third law. J. Appl. Phys. 46, 2548.CrossRefGoogle Scholar
Jing, D.Yi., Tiu-Tung, Y. & Li-Rong, C. (1984). A new relationship for the melting point, the boiling point and the critical point of metallic elements. J. Phys. F: Metal. Phys. 14, L141.Google Scholar
Kerley, G.I. (1991). Users manual for PANDA II: A computer code for calculating equations of state. Report No. SAND88-2291. Albuquerque, NM: Sandia National Laboratories.Google Scholar
Kittel, C. (1971). Introduction to Solid State Physics. New Delhi: Wiley.Google Scholar
Lang, G. (1995). CRC Handbook of Chemistry and Physics (Lide, D.D., Ed.), Vol. 4, p. 126. Boca Raton, FL: CRC Press.Google Scholar
McCloskey, D.J. (1964). An analytic formulation of equations of state. Report No. RM-3905-PR. Rand Corporation.Google Scholar
More, R.M., Warrren, K.H., Young, D.A. & Zimmerman, G.B. (1988). A new quotidian equation state (QEOS) for hot dense matter. Phys. Fluids 31, 3059.CrossRefGoogle Scholar
Morris, E. (1964). An application of the theory of corresponding states to the prediction of the critical constants of metal. Report No. 067/64. London, UK: AWRE.Google Scholar
Novikov, I.I. (1965). Remarks on I.I. Novikov's calculation of the critical temperature of the alkali metals. J. Inorg. Nucl. Chem. 27, 1171.Google Scholar
Partington, J.R. (1949). An Advanced Treatise on Physical Chemistry. London, UK: Longmans.Google Scholar
Ross, M. (1985). Matter under extreme condition of temperature and pressure. Rep. Progr. Phys. 48, 1.CrossRefGoogle Scholar
Seydel, U., Bauhof, H., Fucke, W. & Wadle, H. (1979). Thermophysical data for various transition metals at high temperatures obtained by a submicrosecond-pulse-heating method. High Temp. High Pressures 11, 635.Google Scholar
Shaner, J.W., Gathers, G.R. & Hodgson, W.M. (1977). Proc. 7th Symp on Thermophysical Properties, p. 896. New York: ASME.Google Scholar
Tahir, N.A., Goddard, B., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005a). Impact of 7-TeV/c large hadron collider proton beam on a copper target. J. Appl. Phys. 97, 08332.CrossRefGoogle Scholar
Tahir, N.A., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005b). The CERN large hadron collider as a tool to study high-energy density matter. Phys. Rev. Lett. 94, 135004.CrossRefGoogle Scholar
Temporal, M., Cela, J.J.L., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2005). Compression of a cylindrical hydrogen sample driven by an intense co-axial heavy ion beam. Laser Part. Beams 23, 137.CrossRefGoogle Scholar
Young, D.A. & Alder, B.J. (1971). Critical point of metals from the van der Waals model. Phys. Rev. 3, 364.CrossRefGoogle Scholar
Young, D.A. (1977). A soft-sphere model for liquid metals. Report No. UCRL-52352. Berkley, CA: Lawrence Livermore Laboratory.CrossRefGoogle Scholar
Young, D.A. & Corey, E.M. (1995). A new global equation of state model for hot dense matter. J. Appl. Phys. 78, 3748.CrossRefGoogle Scholar
Zhernokletov, M.V., Zubarev, V.N. & Sutulov, Yu.N. (1984). Adiabats of porous samples and expansion iseotropes of copper. J. Appl. Mech. Techn. Phys. 25, 107110.CrossRefGoogle Scholar
Zhernokletov, M.V., Simakov, G.V., Sutulov, Yu.N. & Trunin, R.F. (1995). Unload isentropes of aluminum, iron, molybdenum, lead and tantalum. Teplofiz. Vys. Tmp. 33, 40.Google Scholar