Hostname: page-component-6bb9c88b65-wr9vw Total loading time: 0 Render date: 2025-07-24T04:53:36.726Z Has data issue: false hasContentIssue false

Contrasting assemblages of Pinanga palms in lowland tropical forests of Brunei Darussalam, Borneo

Published online by Cambridge University Press:  16 June 2025

Mohammad Farid Abdullah
Affiliation:
Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
Salwana Md. Jaafar
Affiliation:
Institute for Biodiversity and Environmental Research, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
Norhayati Ahmad
Affiliation:
Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam Institute for Biodiversity and Environmental Research, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
Rahayu Sukmaria Sukri*
Affiliation:
Institute for Biodiversity and Environmental Research, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
*
Corresponding author: Rahayu Sukmaria Sukri; Email: rahayu.sukri@ubd.edu.bn

Abstract

Pinanga represents one of the largest genera of palms and has been extensively collected by botanists, though ecological studies on Pinanga remain limited. We evaluated species diversity and assemblages of Pinanga palms in two contrasting forest types, heath forest (HF) and mixed Dipterocarp forest (MDF) in Brunei Darussalam located in the Borneo biodiversity hotspot. At three HF and three MDF sites, all Pinanga palms greater than 5 cm height within a 3-ha sampling area per site were recorded and taxonomically identified. Selected soil properties (total N and P concentrations, pH, gravimetric water content [GWC] and OM) and environmental variables (litter depth [LD], humidity, canopy openness [CO] and elevation) were determined for each study site. Our survey recorded a total of ten Pinanga species, comprising 981 individuals. Pinanga abundance was significantly higher in HF sites than in MDF sites, while Pinanga abundance and species richness significantly varied between sites. Patterns in Pinanga species assemblages were significantly influenced by soil properties and elevation in the MDF sites but were only influenced by CO and LD in the HF sites. We identified three Pinanga species found in both forest types: Pinanga lepidota, Pinanga salicifolia and Pinanga mirabilis, while seven Pinanga species were exclusive to MDF sites and none were exclusive to HF sites. Two Pinanga species (Pinanga chaiana and Pinanga veitchii) were recorded as singletons and thus are in urgent need of protection. The restricted distributions of these Pinanga species within Borneo signifies a need to tailor specific conservation strategies in their native habitats to avoid their local extinction.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdullah, F, Jaafar, SM, Ahmad, N and Sukri, RS (2024) Tropical palms and factors influencing their distributions and diversity, with a focus on Pinanga diversity in Southeast Asia. Biotropia 31, 291307.10.11598/btb.2024.31.2.2023CrossRefGoogle Scholar
Allen, SE, Grimshaw, HM, Parkinson, JA and Quarmby, C (1989) Chemical Analysis of Ecological Materials. Oxford, UK: Blackwell Scientific Publications.Google Scholar
Anderson, JAR and Marsden, D (1984) Brunei Forest Resources and Strategic Planning Study. Gadong, Brunei Darussalam: The Forest Resources of Negara Brunei Darussalam, Bandar Seri Begawan.Google Scholar
Anderson, MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 3246.Google Scholar
Abdullah, F (2021) Variation in Foliar Nutrient Contents of Three Pinanga Species with Contrasting Habitats and Leaf Formations. Bandar Seri Begawan, Brunei Darussalam: Universiti Brunei Darussalam.Google Scholar
Bellot, S, Lu, Y, Baker, WJ, Dransfield, J, Forest, F, Kissling, WD, Leitch, IJ, Nic Lughadha, E, Ondo, I, Pironon, S, Walker, BE, Cámara-Leret, R and Bachman, SP (2022) The likely extinction of hundreds of palm species threatens their contributions to people and ecosystems. Nature Ecology & Evolution 6, 17101722.10.1038/s41559-022-01858-0CrossRefGoogle ScholarPubMed
Bello, C, Galetti, M, Pizo, MA, Magnago, LFS, Rocha, MF, Lima, RA, Peres, CA, Ovaskainen, O and Jordano, P (2015) Defaunation affects carbon storage in tropical forests. Science Advances 1, e1501105.10.1126/sciadv.1501105CrossRefGoogle ScholarPubMed
Bellot, S, Odufuwa, P, Dransfield, J, Eiserhardt, WL, Perez-Escobar, OA and Petoe, P (2020) Why and how to develop DNA barcoding for palms. A Case Study of Pinanga Palms 64, 109120.Google Scholar
Bates, D, Mächler, M, Ben, Bolker and Walker, S (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 148.10.18637/jss.v067.i01CrossRefGoogle Scholar
Baker, W J and Dransfield, J (2016). Beyond Genera Palmarum: progress and prospects in palm systematics. Botanical Journal of the Linnean Society 182, 207233.10.1111/boj.12401CrossRefGoogle Scholar
Coode, MJE, Kirkup, DW, Dransfield, J, Forman, LL and Said, IM (1996) A Checklist of the Flowering Plants and Gymnosperms of Brunei Darussalam. Bandar Seri Begawan, Brunei Darussalam: Ministry of Industry and Primary Resources, Brunei Darussalam.Google Scholar
Draper, FC, Asner, GP, Honorio Coronado, EN, Baker, TR, García-Villacorta, R, Pitman, NC, Fine, PV, Phillips, OL, Gómez, RZ, Amasifuén Guerra, CA, Arévalo, MF, Martínez, RV, Brienen, RJ, Monteagudo-Mendoza, A, Torres Montenegro, LA, Sandoval, EV, Roucoux, KH, Ramírez Arévalo, FR, Acuy, ÍM, Aguila Pasquel, JD, Casapia, XT, Llampazo, GF, Medina, MC, Huaymacari, JR and Baraloto, C (2019). Dominant tree species drive beta diversity patterns in western Amazonia. Ecology 100, e02636.10.1002/ecy.2636CrossRefGoogle ScholarPubMed
Dransfield, J, Uhl, NW, Asmussen, CB, Baker, WJ, Harley, MM and Lewis, CE (2008) Genera Palmarum-the Evolution and Classification of the Palms. Kew: Kew Publishing.Google Scholar
Dent, DH, Bagchi, R, Robinson, D, Majalap-Lee, N and Burslem, DFRP (2006) Nutrient fluxes via litterfall and leaf litter decomposition vary across a gradient of soil nutrient supply in lowland tropical rain forest. Plant and Soil 288, 197215.10.1007/s11104-006-9108-1CrossRefGoogle Scholar
Davies, SJ and Becker, P (1996) Floristic composition and stand structure of mixed Dipterocarp and heath forests in Brunei Darussalam. Journal of Tropical Forest Science 8, 542569.Google Scholar
Dransfield, J (1980) Systematic notes on Pinanga (Palmae) in Borneo. Kew Bulletin 35, 769788.10.2307/4119070CrossRefGoogle Scholar
Dransfield, J (1991) Notes on Pinanga (Palmae) in Sarawak. Kew Bulletin 46, 691698.10.2307/4110412CrossRefGoogle Scholar
Dransfield, J (1992) Observations on rheophytic palms in Borneo. Bulletin de l’Institut Francais d’Etudes Andines 21, 415432.10.3406/bifea.1992.1069CrossRefGoogle Scholar
Eiserhardt, WL, Svenning, JC, Kissling, WD and Balslev, H (2011) Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Annals of Botany 108, 13911416.10.1093/aob/mcr146CrossRefGoogle Scholar
Edwards, PJ, Fleischer-Dogley, F and Kaiser-Bunbury, CN (2015) The nutrient economy of Lodoicea maldivica, a monodominant palm producing the world’s largest seed. New Phytologist 206, 990999.CrossRefGoogle ScholarPubMed
Govaerts, R, Nic Lughadha, E, Black, N, Turner, R and Paton, A (2021) The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Scientific Data 8, 215.10.1038/s41597-021-00997-6CrossRefGoogle ScholarPubMed
Harrison, XA, Donaldson, L, Correa-Cano, ME, Evans, J, Fisher, DN, Goodwin, CE, Robinson, BS, Hodgson, DJ and Inger, R (2018) A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794.10.7717/peerj.4794CrossRefGoogle ScholarPubMed
Haji Ramlan, NS (2020) The Influence of Soil Properties on Pinanga Palms at Two Contrasting Mixed Dipterocarp Forests in Brunei Darussalam. Bandar Seri Begawan, Brunei Darussalam: Universiti Brunei Darussalam.Google Scholar
Ikbal, IM, Din, HH, Tuah, WH, Jaafar, SM, Ahmad, N and Sukri, RS (2023) Diversity, structure, and community composition of Bornean heath forest with a focus on Brunei Darussalam. Biodiversitas 24, 28142829.10.13057/biodiv/d240535CrossRefGoogle Scholar
IUCN (2024) The IUCN Red List of Threatened Species. Version 2022-2 https://www.iucnredlist.org/. Retrieved on 10 July 2024.Google Scholar
Jaafar, SM, Metali, F, Nafiah, SNS, Supri, NEZ, Ahmad, N, Burslem, DF and Sukri, RS (2022b) Differential impacts of Acacia invasion on nutrient fluxes in two distinct Bornean lowland tropical rain forests. Forests 13, 2101.10.3390/f13122101CrossRefGoogle Scholar
Jaafar, SM, Sukri, RS and Procheş, Å (2016) An investigation of soil physico-chemical variables across different lowland forest ecosystems of Brunei Darussalam. Malaysian Journal of Science 35, 151168.10.22452/mjs.vol35no2.6CrossRefGoogle Scholar
Jaafar, SM, Metali, F and Sukri, RS (2022a) Acacia invasion differentially impacts soil properties of two contrasting tropical lowland forests in Brunei Darussalam. Journal of Tropical Ecology 38, 259266.10.1017/S0266467422000141CrossRefGoogle Scholar
Jaafar, SM and Sukri, RS (2023) Data on the physicochemical characteristics and texture classification of soil in Bornean tropical heath forests affected by exotic Acacia mangium . Data in Brief 50, 109670.10.1016/j.dib.2023.109670CrossRefGoogle Scholar
Kuhnhäuser, BG, Randi, A, Petoe, P, Chai, PP, Bellot, S and Baker, WJ (2023) Hiding in plain sight: The underground palm Pinanga subterranea . Plants, People, Planet 5, 815820.10.1002/ppp3.10393CrossRefGoogle Scholar
Lee, HS, Davies, SJ, LaFrankie, JV, Tan, S, Yamakura, T, Itoh, A, Ohkubo, T and Ashton, PS (2002) Floristic and structural diversity of mixed Dipterocarp forest in Lambir Hills National Park, Sarawak, Malaysia. Journal of Tropical Forest Science 14, 379400.Google Scholar
Ley-López, JM and Avalos, G (2017) Propagation of the palm flora in a lowland tropical rainforest in Costa Rica: fruit collection and germination patterns. Tropical Conservation Science 10, 1940082917740703.10.1177/1940082917740703CrossRefGoogle Scholar
Lenth, RV (2018) Least-squares means: the R package lsmeans. Journal of statistical software 69, 133.Google Scholar
Muscarella, R, Emilio, T, Phillips, OL, Lewis, SL, Slik, F, Baker, WJ, Couvreur, TLP, Eiserhardt, WL, Svenning, JC, Affum-Baffoe, K, Aiba, SI, de Almeida, EC, de Almeida, SS, de Oliveira, EA, Álvarez-Dávila, E, Alves, LF, Alvez-Valles, CM, Carvalho, FA, Guarin, FA, Andrade, A, Aragão, LEOC, Murakami, AA, Arroyo, L, Ashton, PS, Aymard Corredor, GA, Baker, TR, Camargo, PB, Barlow, J, Bastin, JF, Bengone, NN, Berenguer, E, Berry, N, Blanc, L, Böhning-Gaese, K, Bonal, D, Bongers, F, Bradford, M, Brambach, F, Brearley, FQ, Brewer, SW, Camargo, JLC, Campbell, DG, Castilho, CV, Castro, W, Catchpole, D, Cerón Martínez, CE, Chen, S, Chhang, P, Cho, P, Chutipong, W, Clark, C, Collins, M, Comiskey, JA, Corrales Medina, MN, Costa, FRC, Culmsee, H, David-Higuita, H, Davidar, P, del Aguila-Pasquel, J, Derroire, G, Fiore, AD, Do, TV, Doucet, JL, Dourdain, A, Drake, DR, Ensslin, A, Erwin, T, Ewango, CEN, Ewers, RM, Fauset, S, Feldpausch, TR, Ferreira, J, Ferreira, LV, Fischer, M, Franklin, J, Fredriksson, GM, Gillespie, TW, Gilpin, M, Gonmadje, C, Gunatilleke, AUN, Hakeem, KR, Hall, JS, Hamer, KC, Harris, DJ, Harrison, RD, Hector, A, Hemp, A, Herault, B, Pizango, CGH, Coronado, ENH, Hubau, W, Hussain, MS, Ibrahim, FH, Imai, N, Joly, CA, Joseph, S, Anitha, K, Kartawinata, K, Kassi, J, Killeen, TJ, Kitayama, K, Klitgård, BB, Kooyman, R, Labrière, N, Larney, E, Laumonier, Y, Laurance, SG, Laurance, WF, Lawes, MJ, Levesley, A, Lisingo, J, Lovejoy, T, Lovett, JC, Lu, X, Lykke, AM, Magnusson, WE, Mahayani, NPD, Malhi, Y, Mansor, A, Marcelo Peña, JL, Marimon-Junior, BH, Marshall, AR, Melgaco, K, Bautista, CM, Mihindou, V, Millet, J, Milliken, W, Mohandass, D, Monteagudo Mendoza, AL, Mugerwa, B, Nagamasu, H, Nagy, L, Seuaturien, N, Nascimento, MT, Neill, DA, Neto, LM, Nilus, R, Núñez Vargas, MP, Nurtjahya, E, de Araújo, RNO, Onrizal, O, Palacios, WA, Palacios-Ramos, S, Parren, M, Paudel, E, Morandi, PS, Pennington, RT, Pickavance, G, Pipoly, JJ III, Pitman, NCA, Poedjirahajoe, E, Poorter, L, Poulsen, JR, Rama Chandra Prasad, P, Prieto, A, Puyravaud, JP, Qie, L, Quesada, CA, Ramírez-Angulo, H, Razafimahaimodison, JC, Reitsma, JM, Requena-Rojas, EJ, Correa, ZR, Rodriguez, CR, Roopsind, A, Rovero, F, Rozak, A, Lleras, AR, Rutishauser, E, Rutten, G, Punchi-Manage, R, Salomão, RP, Van Sam, H, Sarker, SK, Satdichanh, M, Schietti, J, Schmitt, CB, Marimon, BS, Senbeta, F, Nath Sharma, L, Sheil, D, Sierra, R, Silva-Espejo, JE, Silveira, M, Sonké, B, Steininger, MK, Steinmetz, R, Stévart, T, Sukumar, R, Sultana, A, Sunderland, TCH, Suresh, HS, Tang, J, Tanner, E, Ter Steege, H, Terborgh, JW, Theilade, I, Timberlake, J, Torres-Lezama, A, Umunay, P, Uriarte, M, Gamarra, LV, van de Bult, M, van der Hout, P, Martinez, RV, Vieira, ICG, Vieira, SA, Vilanova, E, Cayo, JV, Wang, O, Webb, CO, Webb, EL, White, L, Whitfeld, TJS, Wich, S, Willcock, S, Wiser, SK, Young, KR, Zakaria, R, Zang, R, Zartman, CE, Zo-Bi, IC and Balslev, H (2020) The global abundance of tree palms. Global Ecology and Biogeography 29, 14951514.10.1111/geb.13123CrossRefGoogle Scholar
Moeslund, JE, Arge, L, Bøcher, PK, Dalgaard, T and Svenning, JC (2013) Topography as a driver of local terrestrial vascular plant diversity patterns. Nordic Journal of Botany 31, 129144.10.1111/j.1756-1051.2013.00082.xCrossRefGoogle Scholar
Moran, JA, Barker, MG, Moran, AJ, Becker, P and Ross, SM (2000) A comparison of the soil water, nutrient status, and litterfall characteristics of Tropical Heath and Mixed-Dipterocarp Forest sites in Brunei. The Journal of Tropical Biology and Conservation 32, 213.Google Scholar
Metali, F, Abu Salim, K, Tennakoon, K and Burslem, DF (2015) Controls on foliar nutrient and aluminium concentrations in a tropical tree flora: phylogeny, soil chemistry and interactions among elements. New Phytologist 205, 280292.10.1111/nph.12987CrossRefGoogle Scholar
Macedo-Santana, F, Flores-Tolentino, M and Hernández-Guzmán, R (2021) Diversity patterns of palms in Mexico using species distribution models. Écoscience 28, 137147.10.1080/11956860.2021.1888522CrossRefGoogle Scholar
Maimunah, S, Capilla, BR and Harrison, ME (2019) Tree diversity and forest composition of a Bornean heath forest, Indonesia. IOP Conf Ser: Earth Environment Science 270, 012028.10.1088/1755-1315/270/1/012028CrossRefGoogle Scholar
Martinez Arbizu, P (2020) PairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.4, 1.Google Scholar
Mooney, M (2020) Landscape Distribution of Pinanga palm (Arecaceae) Species in Brunei Darussalam. PhD Dissertation. University of the Sunshine Coast.Google Scholar
Nafiah, NS, Sukri, RS, Ya’akub, MY, Jaafar, SM and Metali, F (2022) Contrasting patterns of woody seedlings diversity, abundance and community composition in Bornean heath and peat swamp forests. Mires & Peat 28, 18.Google Scholar
Oksanen, J, Blanchet, FG, Friendly, M, Kindt, R, Legendre, P, McGlinn, D, Minchin, PR, O’Hara, RB, Simpson, GL, Solymos, P, Henry, M, Stevens, H, Szoecs, E and Wagner, H (2020) Package ‘vegan’. Community Ecology Package Version 2.5.7, 299 pp.Google Scholar
Onstein, RE, Baker, WJ, Couvreur, TL, Faurby, S, Svenning, JC and Kissling, WD (2017) Frugivory-related traits promote the speciation of tropical palms. Nature Ecology & Evolution 1, 19031911.10.1038/s41559-017-0348-7CrossRefGoogle ScholarPubMed
Odufuwa, P (2019) DNA barcoding of Pinanga (Arecaceae) of Borneo [Dissertation]. Retrieved from The University of London.Google Scholar
Petoe, P, Kuhnhäuser, BG, Geri, C and Baker, WJ (2020) Lanjak Entimau Wildlife Sanctuary—a Palm Hotspot in the Heart of Borneo. Palms 64, 5784.Google Scholar
Pinheiro, JC and Bates, DM (2004) Mixed-Effects Models in S and S-Plus. New York: Springer.Google Scholar
POWO (2024) Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. [Published on the Internet] Retrieved from https://www.plantsoftheworldonline.org/ on 16 November 2023.Google Scholar
Rodrigues, LF, Cintra, R, Castilho, CV, de Sousa Pereira, O and Pimentel, TP (2014) Influences of forest structure and landscape features on spatial variation in species composition in a palm community in central Amazonia. Journal of Tropical Ecology 30, 565578.10.1017/S0266467414000431CrossRefGoogle Scholar
Ruokolainen, K and Vormisto, J (2000) The most widespread Amazonian palms tend to be tall and habitat generalists. Applied Soil Ecology 1, 97108.Google Scholar
R Core Team (2025) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Sellan, G, Thompson, J, Majalap, N, Robert, R and Brearley, FQ (2020) Impact of soil nitrogen availability and pH on tropical heath forest organic matter decomposition and decomposer activity. Pedobiologia 80, 150645.10.1016/j.pedobi.2020.150645CrossRefGoogle Scholar
Sukri, RS, Wahab, RA, Salim, KA and Burslem, DF (2012) Habitat associations and community structure of dipterocarps in response to environment and soil conditions in Brunei Darussalam, Northwest Borneo. Biotropica 44, 595605.10.1111/j.1744-7429.2011.00837.xCrossRefGoogle Scholar
Sellan, G, Thompson, J, Majalap, N and Brearley, FQ (2019) Soil characteristics influence species composition and forest structure differentially among tree size classes in a Bornean heath forest. Plant Soil 438, 173185.10.1007/s11104-019-04000-5CrossRefGoogle Scholar
Shapcott, A, Slik, JF, Rosli, R and Sukri, RS (2022) Pinanga palms revisited 20 years on: what can changes in Pinanga species populations tell us about rainforest understory palm persistence?. Journal of Tropical Ecology 38, 351361.10.1017/S0266467422000256CrossRefGoogle Scholar
Shapcott, A (1999) Comparison of the population genetics and densities of five Pinanga palm species at Kuala Belalong, Brunei. Molecular Ecology 8, 16411654.10.1046/j.1365-294x.1999.00749.xCrossRefGoogle ScholarPubMed
Svenning, JC (2001) Environmental heterogeneity, recruitment limitation and the mesoscale distribution of palms in a tropical montane rain forest (Maquipucuna, Ecuador). Journal of tropical ecology 17, 97113.10.1017/S0266467401001067CrossRefGoogle Scholar
Trujillo, W, Rivera-Rondon, CA and Balslev, H (2021) Palm functional traits, soil fertility and hydrology relationships in Western Amazonia. Frontiers in Forests and Global Change 4, 723553.10.3389/ffgc.2021.723553CrossRefGoogle Scholar
Viana, JL, Turner, BL and Dalling, JW (2021) Compositional variation in understorey fern and palm communities along a soil fertility and rainfall gradient in a lower montane tropical forest. Journal of Vegetation Science 32, e12947.10.1111/jvs.12947CrossRefGoogle Scholar
Wong, KM, Ahmad, JA, Low, YW and Kalat, MAA (2015) Rainforest Plants and Flowers of Brunei Darussalam. Brunei: Forestry Department of the Ministry of Industry and Primary Resources.Google Scholar
Yudaputra, A, Witono, JR, Astuti, IP, Munawaroh, E, Fijridiyanto, IA, Zulkarnaen, RN, Robiansyah, I, Raharjo, PD and Cropper, WP (2021) Habitat suitability, population structure and conservation status of Pinanga arinasae (Arecaceae), an Endemic Palm in Bali Island, Indonesia. Diversity 14, 10.10.3390/d14010010CrossRefGoogle Scholar
Zuur, AF, Ieno, EN, Walker, NJ, Savaliev, AA and Smith, GM (2009) Mixed Effects Models and Extensions in Ecology with R. New York: Springer.10.1007/978-0-387-87458-6CrossRefGoogle Scholar
Zulkarnaen, RN, Nisyawati, N and Witono, JR (2019) Population study and habitat preferences of Pinang Jawa (Pinanga javana) in Mt. Slamet, Central Java, Indonesia. Biodiversitas 20, 712718.10.13057/biodiv/d200314CrossRefGoogle Scholar
Zaini, NH and Sukri, RS (2014) The diversity and abundance of ground herbs in lowland mixed dipterocarp forest and heath forest in Brunei Darussalam. Reinwardtia 14, 7378.10.14203/reinwardtia.v14i1.397CrossRefGoogle Scholar
Zona, S and Christenhusz, MJ (2015) Litter-trapping plants: filter-feeders of the plant kingdom. Botanical Journal of the Linnean Society 179, 554586.10.1111/boj.12346CrossRefGoogle Scholar
Supplementary material: File

Abdullah et al. supplementary material

Abdullah et al. supplementary material
Download Abdullah et al. supplementary material(File)
File 669.5 KB