Hostname: page-component-54dcc4c588-64p75 Total loading time: 0 Render date: 2025-10-06T17:50:52.028Z Has data issue: false hasContentIssue false

Does the feeding mechanism determine the accumulation of microplastics in marine benthic organisms? A systematic review

Published online by Cambridge University Press:  03 September 2025

Suelen Nascimento dos Santos*
Affiliation:
Departamento de Oceanografia (DOCEAN) – Laboratório de Bentos (LABEN), Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
Matheus Assis de Oliveira
Affiliation:
Institut de Recherche pour le Développement - IRD, Sète, France Departamento de Oceanografia (DOCEAN) - Laboratório de Zooplâncton (LABZOO), Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
Severino Alves Júnior
Affiliation:
Departamento de Química Fundamental (DQF) – Laboratório de Terras Raras (BSTR), Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
José Souto Rosa Filho
Affiliation:
Departamento de Oceanografia (DOCEAN) – Laboratório de Bentos (LABEN), Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
*
Corresponding author: Suelen Nascimento Dos Santos; Email: suelen.nascimento@ufpe.br

Abstract

Microplastics are found in all oceanic environments and represent a growing concern for researchers and managers of marine environments. A systematic review was carried out to investigate the accumulation of microplastics (MPs) in filter feeders, focusing on the potential relationship between the feeding mechanism and MPs’ accumulation. The accumulation of microplastics was compared among marine benthic filter feeders that use different filtering mechanisms. Rayyan® software was employed to screen the articles, and data extraction was subsequently carried out. The review followed well-structured protocol PRISMA 2020 guidelines to guarantee methodological rigor and minimize biases. Due to the high heterogeneity (Higgins I2 test, I2 > 95%) of data methodologies, a narrative synthesis was used as the output of the review. Most publications report microplastics in mollusks (oysters, mussels, and clams), and bivalves were the group most studied (76.67%). Sponges (91 to 612 items g – 1 DW) and polychaetes (1 to 880 items g–1 WW) had the highest number of MPs. Although it is possible to establish relationships between feeding mechanisms and MPs accumulation, using distinct methodologies makes comparing the results of different studies difficult, leading to an urgent call for standardizing methods for microplastic studies in marine organisms.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adamopoulou, A, Zeri, C, Garaventa, F, Gambardella, C, Ioakeimidis, C and Pitta, E (2021) Distribution patterns of floating microplastics in open and coastal waters of the eastern Mediterranean Sea (Ionian, Aegean, and Levantine seas). Frontiers in Marine Science 8, 699000. https://doi.org/10.3389/fmars.2021.699000CrossRefGoogle Scholar
Ahmed, MB, Rahman, MS, Alom, J, Hasan, MS, Johir, MAH, Mondal, MIH, Lee, D, Jaeil, P, Zhou, JL and Yoon, MH (2021) Microplastic particles in the aquatic environment: A systematic review. Science of the Total Environment 775, 145793. https://doi.org/10.1016/j.scitotenv.2021.145793CrossRefGoogle ScholarPubMed
Akkemik, KA (2015) Rapid economic growth and its sustainability in China. Perceptions 20, 133158.Google Scholar
Anonymous (1886) Poisonous Mussels from Impure Waters. Science ns-7(159s), 175176. https://doi.org/10.1126/science.ns-7.159S.175CrossRefGoogle Scholar
Asadzadeh, SS, Kiørboe, T, Larsen, PS, Leys, SP, Yahel, G and Walther, JH (2020) Hydrodynamics of sponge pumps and evolution of the sponge body plan. Elife 9, e61012. https://doi.org/10.7554/eLife.61012CrossRefGoogle ScholarPubMed
Barboza, LGA, Vethaak, AD, Lavorante, BR, Lundebye, AK and Guilhermino, L (2018) Marine microplastic debris: An emerging issue for food security, food safety and human health. Marine Pollution Bulletin 133, 336348. https://doi.org/10.1016/j.marpolbul.2018.05.047CrossRefGoogle ScholarPubMed
Berlino, M, Mangano, MC, De Vittor, C and Sarà, GJEP (2021) Effects of microplastics on the functional traits of aquatic benthic organisms: A global-scale meta-analysis. Environmental Pollution 285, 117174. https://doi.org/10.1016/j.envpol.2021.117174CrossRefGoogle ScholarPubMed
Beyer, J, Green, NW, Brooks, S, Allan, IJ, Ruus, A, Gomes, T, Brate, ILN and Schøyen, M (2017) Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: A review. Marine Environmental Research 130, 338365. https://doi.org/10.1016/j.marenvres.2017.07.024CrossRefGoogle ScholarPubMed
Bulleri, F, Ravaglioli, C, Anselmi, S and Renzi, M (2021) The sea cucumber Holothuria tubulosa does not reduce the size of microplastics but enhances their resuspension in the water column. Science of the Total Environment 781, 146650. https://doi.org/10.1016/j.scitotenv.2021.146650CrossRefGoogle Scholar
Cakaj, A, Lisiak-Zielińska, M, Drzewiecka, K, Budka, A, Borowiak, K, Drapikowska, M, Cakaj, A, Qorri, E and Szkudlarz, P (2023) Potential impact of urban land use on microplastic atmospheric deposition: A case study in Pristina City, Kosovo. Sustainability 15, 16464. https://doi.org/10.3390/su152316464CrossRefGoogle Scholar
Campanale, C, Savino, I, Pojar, I, Massarelli, C and Uricchio, VF (2020) A practical overview of methodologies for sampling and analysis of microplastics in riverine environments. Sustainability 12(17), 6755. https://doi.org/10.3390/su12176755CrossRefGoogle Scholar
Cantillo, AY (1998) Comparison of results of mussel watch programs of the United States and France with worldwide mussel watch studies. Marine Pollution Bulletin 36(9), 712717. https://doi.org/.1016/S0025-326X(98)00049-6CrossRefGoogle Scholar
Carney, AB and Eggert, H (2019) Marine plastic pollution: Sources, impacts, and policy issues. Review of Environmental Economics and Policy 13, 317326. https://doi.org/10.1093/reep/rez012CrossRefGoogle Scholar
Chahouri, A, Yacoubi, B, Moukrim, A and Banaoui, A (2023) Bivalve molluscs as bioindicators of multiple stressors in the marine environment: Recent advances. Continental Shelf Research 264, 105056. https://doi.org/10.1016/j.csr.2023.105056CrossRefGoogle Scholar
Chen, J, Deng, Y, Chen, Y, Peng, X, Qin, H, Wang, T and Zhao, C (2022) Distribution patterns of microplastics pollution in urban fresh waters: A case study of rivers in Chengdu, China. International Journal of Environmental Research in Public Health 19, 8972. https://doi.org/10.3390/ijerph19158972CrossRefGoogle Scholar
Corcoran, PL, Biesinger, MC and Grifi, M (2009) Plastics and beaches: A degrading relationship. Marine Pollution Bulletin 58, 8084. https://doi.org/10.1016/j.marpolbul.2008.08CrossRefGoogle ScholarPubMed
Costelloe, J and Keegan, BF (1984) Feeding and related morphological structures in the dendrochirote Aslia lefevrei (Holothuroidea: Echinodermata). Marine Biology 84(2), 135142. https://doi.org/10.1007/BF00392998CrossRefGoogle Scholar
Covernton, GA, Cox, KD, Fleming, WL, Buirs, BM, Davies, HL, Juanes, F and Dower, JF (2022) Large size (> 100‐μm) microplastics are not biomagnifying in coastal marine food webs of British Columbia, Canada. Ecological Applications 32(7), e2654. https://doi.org/10.1002/eap.2654CrossRefGoogle Scholar
D’aloia, CC, Majoris, JE and Buston, PM (2011) Predictors of the distribution and abundance of a tube sponge and its resident goby. Coral Reefs 30, 777786. https://doi.org/10.1007/s00338-011-0755-1CrossRefGoogle Scholar
Danopoulos, E, Jenner, LC, Twiddy, M and Rotchell, JM (2020) Microplastic contamination of seafood intended for human consumption: A systematic review and meta-analysis. Environmental Health Perspectives 128(12), 126002. https://doi.org/10.1289/EHP7171CrossRefGoogle ScholarPubMed
Davidson, K and Dudas, SE (2016) Microplastic ingestion by wild and cultured Manila clams (Venerupis philippinarum) from Baynes Sound, British Columbia. Archives of Environmental Contamination and Toxicology 71, 147156. https://doi.org/10.1007/s00244-016-0286-4CrossRefGoogle ScholarPubMed
De Campos, AFM, Caetano, LMD and Laus-Gomes, V (2023) revisão sistemática de literatura em educação: Características, estrutura e possibilidades às pesquisas qualitativas. Linguagens, Educação E Sociedade 27(54), 139169. https://doi.org/10.26694/rles.v27i54.2702CrossRefGoogle Scholar
Fallon, BR and Freeman, CJ (2021) Plastics in Porifera: The occurrence of potential microplastics in marine sponges and seawater from Bocas del Toro, Panamá. PeerJ 9, e11638. https://doi.org/10.7717/peerj.11638CrossRefGoogle Scholar
FAO. 2020. FAO fisheries and aquaculture - FishStatJ - Software for fishery and aquaculture statistical time series. In FAO Fisheries and Aquaculture Division [online]. Rome. Available at https://www.fao.org/fishery/en/topic/166235?lang=en (accessed 17 January 2024).Google Scholar
Fauchald, K and Jumars, PA (1979) The diet of worms: A study of polychaete feeding guilds.Oceanography and Marine. Biology Annual Review 17, 193284.Google Scholar
Ferreira, HC and Lôbo-Hajdu, G (2023) Microplastics in coastal and oceanic surface waters and their role as carriers of pollutants of emerging concern in marine organisms. Marine Environmental Research 106021. https://doi.org/10.1016/j.marenvres.2023.106021CrossRefGoogle Scholar
Foley, CJ, Feiner, ZS, Malinich, TD and Höök, TO (2018) A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Science of the Total Environment 631, 550559. https://doi.org/10.1016/j.scitotenv.2018.03CrossRefGoogle ScholarPubMed
Fu, Z and Wang, J (2019) Current practices and future perspectives of microplastic pollution in freshwater ecosystems in China. Science of the Total Environment 691, 697712. https://doi.org/10.1016/j.scitotenv.2019.07.1CrossRefGoogle ScholarPubMed
Girard, EB, Fuchs, A, Kaliwoda, M, Lasut, M, Ploetz, E, Schmahl, WW and Wörheide, G (2021) Sponges as bioindicators for microparticulate pollutants? Environemental Pollution 268A, 115851. https://doi.org/10.1016/j.envpol.2020.115851CrossRefGoogle Scholar
Gökalp, M, Kooistra, T, Rocha, MS, Silva, TH, Osinga, R, Murk, AJ and Wijgerde, T (2020) The effect of depth on the morphology, bacterial clearance, and respiration of the Mediterranean sponge Chondrosia reniformis (Nardo, 1847). Marine Drugs 18(7), 358. https://doi.org/10.3390/md18070358CrossRefGoogle ScholarPubMed
Hamm, T and Lenz, M (2021) Negative impacts of realistic doses of spherical and irregular microplastics emerged late during a 42weeks-long exposure experiment with blue mussels. Science of the Total Environment 778, 146088. https://doi.org/10.1016/j.scitotenv.2021.146088CrossRefGoogle ScholarPubMed
Hamzah, SR, Anuar, ST, Khalik, WMAWM, Kolandhasamy, P and Ibrahim, YS (2021) Ingestion of microplastics by the estuarine polychaete, Namalycastis sp. in the Setiu Wetlands, Malaysia. Marine Pollution Bulletin 170, 112617. https://doi.org/10.1016/j.marpolbul.2021.112617CrossRefGoogle ScholarPubMed
Harris, PT (2020) The fate of microplastic in marine sedimentary environments: A review and synthesis. Marine Pollution Bulletin 158, 111398. https://doi.org/10.1016/j.marpolbul.2020.111398CrossRefGoogle ScholarPubMed
Higgins, JP and Green, S Cochrane handbook for systematic reviews of interventions. (2008). https://doi.org/10.1002/9780470712184CrossRefGoogle Scholar
Higgins, JP, Thompson, SG, Deeks, JJ and Altman, DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414), 557560. https://doi.org/10.1136/bmj.327.7414.557CrossRefGoogle ScholarPubMed
Higgins, JPT and Thompson, SG (2002) Quantifying heterogeneity in a meta‐analysis. Statistics in Medicine 21(11), 15391558. https://doi.org/10.1002/sim.1186CrossRefGoogle ScholarPubMed
Hiki, K and Nakajima, F (2022) Microplastic ingestion by a benthic amphipod in different feeding modes. Journal of Water and Environment Technology 20(5), 137144. https://doi.org/10.2965/jwet.22-05CrossRefGoogle Scholar
Hindenberg, LM, Gorb, SN and Büsse, S (2022) Functional morphology of cirri in the barnacle Amphibalanus improvisus crustacea: Balanidae. Journal of Morphology 283, 14391450. https://doi.org/10.1002/jmor.21517CrossRefGoogle ScholarPubMed
Horn, D, Miller, M, Anderson, S and Steele, C (2019) Microplastics are ubiquitous on California beaches and enter the coastal food web through consumption by Pacific mole crabs. Marine Pollution Bulletin 139, 231237. https://doi.org/10.1016/j.marpolbul.2018.12.039CrossRefGoogle ScholarPubMed
Huang, M, Si, C, Qiu, C and Wang, G (2024) Microplastics analysis: From qualitative to quantitative. Environmental Science: Advances 3, 16521668. https://doi.org/10.1039/d4va00244j.Google Scholar
Huang, S, Edie, SM, Collins, KS, Crouch, NMA, Roy, K and Jablonski, D (2023) Diversity, distribution and intrinsic extinction vulnerability of exploited marine bivalves. Nature Communications 14, 4639. https://doi.org/10.1038/s41467-023-40053-yCrossRefGoogle ScholarPubMed
Huffman, AR (2021) Bivalves as biological sieves: Bioreactivity pathways of microplastics and nanoplastics. The Biological Bulletin 241(2), 185195. https://doi.org/10.1086/716259CrossRefGoogle Scholar
Inoue, K, Onitsuka, Y and Koito, T (2021) Mussel biology: From the byssus to ecology and physiology, including microplastic ingestion and deep-sea adaptations. Fisheries Science 111. https://doi.org/10.1007/s12562-021-01550-5Google Scholar
Ji, Z, Huang, Y, Feng, Y, Johansen, A, Xue, J, Tremblay, LA and Li, Z (2021) Effects of pristine microplastics and nanoplastics on soil invertebrates: A systematic review and meta-analysis of available data. Science of the Total Environment 788, 147784. https://doi.org/10.1016/j.scitotenv.2021.147784CrossRefGoogle ScholarPubMed
Jigang, J 2020. China’s Industrial Policy: Evolution and Experience. ECIDC, Project Paper No.11.Google Scholar
Jørgensen, C (1983) Fluid mechanical aspects of suspension feeding. Marine Ecology Progress Series 11, 89103. https://doi.org/10.3354/meps011089CrossRefGoogle Scholar
Jørgensen, CB (1966) Biology of Suspension Feeding. Pergamon Press. Oxford.Google Scholar
Joshi, K, Rabari, V, Patel, H, Patel, K, Rakib, RJ, Trivedi, J, Paray, BA, Walker, TR and Jakariya, MD (2024) Microplastic contamination in filter-feeding oyster Saccostrea cuccullata: Novel insights in a marine ecosystem. Marine Pollution Bulletin 202, 116326. https://doi.org/10.1016/j.marpolbul.2024.116326CrossRefGoogle Scholar
Joyce, PW and Falkenberg, LJ (2023) Microplastic abundances in co-occurring marine mussels: Species and spatial differences. Regional Studies in Marine Science 57, 102730. https://doi.org/10.1016/j.rsma.2022.102730CrossRefGoogle Scholar
Jumars, PA, Dorgan, KM and Lindsay, SM (2015) Diet of worms emended: An update of polychaete feeding guilds. Annual Review in Marine Sciences 7, 497520. https://doi:10.1146/annurev-marine-010814-020007CrossRefGoogle ScholarPubMed
Júnior, RNCC, Silva, WC, Silva, ÉBR, , PR, Friaes, EPP, Costa, BO and Oliveira Júnior, JA (2023) Revisão integrativa, sistemática e narrativa-aspectos importantes na elaboração de uma revisão de literatura. Revista ACB: Biblioteconomia Em Santa Catarina 28(1), 4.Google Scholar
Kangas, A, Setälä, O, Kauppi, L and Lehtiniemi, M (2023) Trophic transfer increases the exposure to microplastics in littoral predators. Marine Pollution Bulletin 196, 115553. https://doi.org/10.1016/j.marpolbul.2023.115553CrossRefGoogle ScholarPubMed
Keisling, C, Harris, RD, Blaze, J, Coffin, J and Byers, JE (2020) Low concentrations and low spatial variability of marine microplastics in oysters (Crassostrea virginica) in a rural Georgia estuary. Marine Pollution Bulletin 150, 110672. https://doi.org/10.1016/j.marpolbul.2019.110672CrossRefGoogle Scholar
Khanjani, MH, Sharifinia, M and Mohammadi, AR (2023) The impact of microplastics on bivalve mollusks: A bibliometric and scientific review. Marine Pollution Bulletin 194, 115271. https://doi.org/10.1016/j.marpolbul.2023.115271CrossRefGoogle ScholarPubMed
Knutsen, H, Cyvin, JB, Totland, C, Lilleeng, Ø, Wade, EJ, Castro, V, Petterson, K, Moskeland, T and Arp, HPH (2020) Microplastic accumulation by tube-dwelling, suspension feeding polychaetes from the sediment surface: A case study from the Norwegian Continental Shelf. Marine Environmental Research 161, 105073. https://doi.org/10.1016/j.marenvres.2020.105073CrossRefGoogle ScholarPubMed
Landrigan, PJ, Stegeman, JJ, Fleming, LE, Allemand, D, Anderson, DM, Backer, LC, Brucker-Davis, F, Chevalier, N, Corra, L, Czerucka, D and Rampal, P (2020) Human health and ocean pollution. Annals of Global Health 86(1), 151. https://doi.org/10.5334/aogh.2831CrossRefGoogle ScholarPubMed
Lesser, MP (2006) Benthic-pelagic coupling on coral reefs: Feeding and growth of Caribbean sponges. Journal of Experimental Marine Biology and Ecology 328, 277288. https://doi.org/10.1016/j.jembe.2005.07.010CrossRefGoogle Scholar
Leys, SP and Eerkes-Medrano, DI (2006) Feeding in a calcareous sponge: Particle uptake by pseudopodia. The Biological Bulletin 211(2), 157171. https://doi.org/10.2307/4134590CrossRefGoogle Scholar
Leys, SP, Reidenbach, MA, Tunnicliffe, V, Yahel, G, Reiswig, HM and Shavit, U (2011) The sponge pump: The role of current induced flow in the design of the sponge body plan. PLoS ONE 6(12), e27787. https://doi.org/10.1371/journal.pone.0027787CrossRefGoogle ScholarPubMed
Li, J, Qu, X, Su, L, Zhang, W, Yang, D, Kolandhasamy, P and Shi, H (2016) Microplastics in mussels along the coastal waters of China. Environmental Pollution 214, 177184. https://doi.org/10.1016/j.envpol.2016.04.012CrossRefGoogle ScholarPubMed
Li, J, Wang, Z, Rotchell, JM, Shen, X, Li, Q and Zhu, J (2021) Where are we? Towards an understanding of the selective accumulation of microplastics in mussels. Environmental Pollution 286, 117543. https://doi.org/10.1016/j.envpol.2021.117543CrossRefGoogle ScholarPubMed
Li, J, Yang, D, Li, L, Jabeen, K and Shi, H (2015) Microplastics in commercial bivalves from China. Environmental Pollution 207, 190195. https://doi.org/10.1016/j.envpol.2015.09.018CrossRefGoogle ScholarPubMed
Liu, J, Lv, M, Sun, A, Ding, J, Wang, Y, Chang, X and Chen, L (2022b) Exposure to microplastics reduces the bioaccumulation of sulfamethoxazole but enhances its effects on gut microbiota and the antibiotic resistome of mice. Chemosphere 294, 133810. https://doi.org/10.1016/j.chemosphere.2022.133810CrossRefGoogle Scholar
Longo, C, Corriero, G, Licciano, M and Stabili, L (2010) Bacterial accumulation by the Demospongiae Hymeniacidon perlevis: A tool for the bioremediation of polluted seawater. Marine Pollution Bulletin 60(8), 11821187. https://doi.org/10.1016/j.marpolbul.2010.03.035CrossRefGoogle ScholarPubMed
Maar, K, Shavit, U, Andersen, A and Kiørboe, T (2024) The fluid dynamics of barnacle feeding. Journal of Experimental Biology 227(5), jeb246541. https://doi.org/10.1242/jeb.246541CrossRefGoogle ScholarPubMed
Mactavish, T, Savage, C, Vopel, K and Stenton-Dozey, J (2012) Deposit-feeding sea cucumbers enhance mineralization and nutrient cycling in organically-enriched coastal sediments. PLoS ONE 7(11), e50031. https://doi.org/10.1371/journal.pone.0050031CrossRefGoogle ScholarPubMed
Marmara, D, Katsanevakis, S, Brundo, MV, Tiralongo, F, Ignoto, S and Krasakopoulou, E (2023) Microplastics ingestion by marine fauna with a particular focus on commercial species: A systematic review. Frontiers in Marine Science 10, 116. https://doi.org/10.3389/fmars.2023.1240969CrossRefGoogle Scholar
Marn, N, Jusup, M, Kooijman, SA and Klanjscek, T (2020) Quantifying impacts of plastic debris on marine wildlife identifies ecological breakpoints. Ecology Letters 23(10), 14791487. https://doi.org/10.1111/ele.13574CrossRefGoogle ScholarPubMed
Marques, M (2020) Economia, motor da interação humana com o Oceano. Relações Internacionais 66, 7995. https://doi.org/10.23906/ri2020.66a05CrossRefGoogle Scholar
Mason, VG, Skov, MW, Hiddink, JG and Walton, M (2022) Microplastics alter multiple biological processes of marine benthic fauna. Science of the Total Environment 845, 157362. https://doi.org/10.1016/j.scitotenv.2022.157362CrossRefGoogle ScholarPubMed
Mayoma, BS, Sørensen, C, Shashoua, Y and Khan, FR (2020) Microplastics in beach sediments and cockles (Anadara antiquata) along the Tanzanian coastline. Bulletin of Environmental Contamination and Toxicology 105, 513521. https://doi.org/10.1007/s00128-020-02991-xCrossRefGoogle ScholarPubMed
Mesquita, AF, Gonçalves, FJM and Gonçalves, AMM (2023) Marine bivalves’ ecological roles and humans-environmental interactions to achieve sustainable aquatic ecosystems. In Gonçalves, AM and Summers, JK (eds), Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts, Environmental sciences. Croatia: IntechOpen, pp. 120. https://doi.org/10.5772/intechopen.111386Google Scholar
Morganti, TM, Ribes, M, Yahel, G and Coma, R (2019) Size is the major determinant of pumping rates in marine sponges. Frontiers in Physiology 10, 1474. https://doi.org/10.3389/fphys.2019.01474CrossRefGoogle Scholar
Nelms, SE, Galloway, TS, Godley, BJ, Jarvis, DS and Lindeque, PK (2018) Investigating microplastic trophic transfer in marine top predators. Environmental Pollution 238, 9991007. https://doi.org/10.1016/j.envpol.2018.02.016CrossRefGoogle ScholarPubMed
Onink, V, Kaandorp, MLA, van Sebille, E and Laufkötter, C (2022) Influence of particle size and fragmentation on large-scale microplastic transport in the Mediterranean Sea. Environmental Science and Technology 56(22), 1552815540. https://doi.org/10.1021/acs.est.2c03363CrossRefGoogle ScholarPubMed
Oza, J, Rabari, V, Yadav, VK, Sahoo, DK, Patel, A and Trivedi, J (2024) A systematic review on microplastic contamination in fishes of Asia: Polymeric risk assessment and future prospectives. Environmental Toxicology and Chemistry 43(4), 671685. https://doi.org/10.1002/etc.5821CrossRefGoogle ScholarPubMed
Page, MJ, McKenzie, JE, Bossuyt, PM, Boutron, I, Hoffmann, TC, Mulrow, CD, Shamseer, L, Tetzlaff, JM, Akl, EA, Brennan, SE and Chou, R (2021)The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 372, n71. https://doi.org/10.1136/bmj.n71.CrossRefGoogle ScholarPubMed
Pierrat, J, Bédier, A, Eeckhaut, I, Magalon, H and Frouin, P (2021) Sophistication in a seemingly simple creature: A review of wild holothurian nutrition in marine ecosystems. Biological Reviews of the Cambridge Philosophical Society 97(1), 273298. https://doi.org/10.1111/brv.12799CrossRefGoogle Scholar
Pile, A and Witman, J (1996) In situ grazing on plankton <10 μm by the boreal sponge Mycale Lingua. Marine Ecology Progress Series 141, 95102. https://doi.org/10.3354/meps141095CrossRefGoogle Scholar
Porter, A, Godbold, JA, Lewis, CN, Savage, G, Solan, M and Galloway, TS (2023b) Microplastic burden in marine benthic invertebrates depends on species traits and feeding ecology within biogeographical provinces. Nature Communications 14(1), 8023. https://doi.org/10.1038/s41467-023-43788-wCrossRefGoogle Scholar
Rafey, A, Pal, K, Pant, KK, Bohre, A and Modak, A (2023) A state-of-the-art review on the technological advancements for the sustainable management of plastic waste in consort with the generation of energy and value-added chemicals. Catalysts 13(2), 420. https://doi.org/10.3390/catal13020420CrossRefGoogle Scholar
Reiswig, HM (1971) In situ pumping activities of tropical Demospongiae. Marine Biology 9, 3850. https://doi.org/10.1007/BF00348816CrossRefGoogle Scholar
Reiswig, HM (1974) Water transport, respiration and energetics of three tropical marine sponges. Journal of Experimental Marine Biology and Ecology 14(3), 231249. https://doi.org/10.1016/0022-0981(74)90005-7CrossRefGoogle Scholar
Ribes, M, Coma, R, Gili, JM, Svoboda, A, Julia, A and Parera, J (2000) A semi-closed recirculating system for the in situ study of feeding and respiration of benthic suspension feeders. Scientia Marina 64(S1), 265275. https://doi.org/10.3989/scimar.2000.64s1265CrossRefGoogle Scholar
Riisgård, HU, Grémare, A, Amouroux, JM, Charles, F, Vétion, G, Rosenberg, R and Nielsen, C (2002) Comparative study of water-processing in two ciliary filter-feeding polychaetes (Ditrupa arietina and Euchone papillosa) from two different habitats. Marine Ecology Progress Series 229, 113126. https://doi.org/10.3354/meps229113CrossRefGoogle Scholar
Riisgård, HU and Larsen, PS (2010) Particle capture mechanisms in suspension-feeding invertebrates. Marine Ecology Progress Series 418, 255293. https://doi.org/10.3354/meps08755CrossRefGoogle Scholar
Riisgård, HU and Larsen, PS (2015) Filter-feeding zoobenthos and hydrodynamics. In Rossi, S, Bramanti, L, Gori, A and Orejas, C (eds), Marine Animal Forests. Cham: Springer. https://doi.org//10.1007/978-3-319-17001-5_19-1Google Scholar
Riisgård, HU, Nielsen, C and Larsen, PS (2000) Downstream collecting in ciliary suspension feeders: The catch-up principle. Marine Ecology Progress Series 207, 3351. https://doi.org/10.3354/meps207033CrossRefGoogle Scholar
Ritchie, H and Roser, M (2023). How much plastic waste ends up in the ocean? our world in data. Retrieved January 1, 2025. From https://ourworldindata.org/plastic-pollutionGoogle Scholar
Santos, E, Cardoso, D and Apostolo, J (2022) Como medir e explorar a heterogeneidade de uma meta-análise: Estratégias metodológicas fundamentais. Revista de Enfermagem Referência 6(1), e21077. https://doi.org/10.12707/RV21077CrossRefGoogle Scholar
Self, RF and Jumars, PA (1988) Cross-phyletic patterns of particle selection by deposit feeders. Journal of Marine Research 46(1), 119143. https://doi.org/10.1357/002224088785113685CrossRefGoogle Scholar
Senko, JF, Nelms, SE, Reavis, JL, Witherington, B, Godley, BJ and Wallace, BP (2020) Understanding individual and population-level effects of plastic pollution on marine megafauna. Endangered Species Research 43, 234252. https://doi.org/10.3354/esr01064CrossRefGoogle Scholar
Setälä, O, Norkko, J and Lehtiniemi, M (2016) Feeding type affects microplastic ingestion in a coastal invertebrate community. Marine Pollution Bulletin 102(1), 95101. https://doi.org/10.1016/j.marpolbul.2015.11.053CrossRefGoogle Scholar
Sfriso, AA, Tomio, Y, Rosso, B, Gambaro, A, Sfriso, A, Corami, F, Rastelli, E, Corinaldesi, C, Mistri, M and Munari, C (2020) Microplastic accumulation in benthic invertebrates in terra nova bay (Ross Sea, Antarctica). Environment International 137, 105587. https://doi.org/10.1016/j.envint.2020.105587CrossRefGoogle ScholarPubMed
Simon-Sánchez, L, Grelaud, M, Franci, M and Ziveri, P (2022) Are research methods shaping our understanding of microplastic pollution? A literature review on the seawater and sediment bodies of the Mediterranean Sea. Environmental Pollution 292, 118275. https://doi.org/10.1016/j.envpol.2021.118275CrossRefGoogle ScholarPubMed
Smaal, AC, Ferreira, JG, Grant, J, Petersen, JK and Strand, Ø (2019) Goods and Services of Marine Bivalves. Switzerland: Springer Nature. https://10.0.3.239/978-3-319-96776-9 10.1007/978-3-319-96776-9CrossRefGoogle Scholar
Sparks, C (2020) Microplastics in mussels along the coast of Cape Town, South Africa. Bulletin of Environmental Contamination and Toxicology 104(4), 423431. https://doi.org/10.1007/s00128-020-02809-wCrossRefGoogle ScholarPubMed
Stabili, L, Licciano, M, Giangrande, A, Longo, C, Mercurio, M, Marzano, CN and Corriero, G (2020) Filtering activity of Spongia Officinalis Var. Adriatica (Schmidt) (Porifera, Demospongiae) on Bacterioplankton: Implications for bioremediation of polluted seawater. Water Research 40, 30833090. https://doi.org/10.1016/j.watres.2006.06.012CrossRefGoogle Scholar
Stollberg, N, Kröger, SD, Reininghaus, M, Forberger, J, Witt, G and Brenner, M (2021) Uptake and absorption of fluoranthene from spiked microplastics into the digestive gland tissues of blue mussels. Mytilus edulis L. Chemosphere 279, 130480. https://doi.org/10.1016/j.chemosphere.2021.130480CrossRefGoogle ScholarPubMed
Struck, TH, Paul, C, Hill, N, Hartmann, S, Hosel, C, Kube, M, Lieb, B, Meyer, A, Tiedemann, R, Purschke, G and Bleidorn, C (2011) Phylogenomic analyses unravel annelid evolution. Nature 470, 9598.10.1038/nature09864CrossRefGoogle Scholar
Sul, JAI and Costa, MF (2014) The present and future of microplastic pollution in the marine environment. Environmental Pollution 185, 352364. https://doi.org/10.1016/j.envpol.2013.10.036Google Scholar
Ta, AT, Pupuang, P, Babel, S and Wang, LP (2022) Investigation of microplastic contamination in blood cockles and green mussels from selected aquaculture farms and markets in Thailand. Chemosphere 303, 134918. https://doi.org/10.1016/j.chemosphere.2022.134918CrossRefGoogle ScholarPubMed
Tang, R, Zhang, T, Song, K, Sun, Y, Chen, Y, Huang, W and Feng, Z (2022) Microplastics in commercial clams from the intertidal zone of the South Yellow Sea, China. Frontiers in Marine Science 9, 905923. https://doi.org/10.3389/fmars.2022.905923CrossRefGoogle Scholar
Varamogianni-Mamatsi, D, Anastasiou, TI, Vernadou, E, Papandroulakis, N, Kalogerakis, N, Dailianis, T and Mandalakis, M (2021) A multi-species investigation of sponges’ filtering activity towards marine microalgae. Marine Drugs 20(1), 24. https://doi.org/10.3390/md20010024CrossRefGoogle ScholarPubMed
Vecchi, S, Bianchi, J, Scalici, M, Fabroni, F and Tomassetti, P (2021) Field evidence for microplastic interactions in marine benthic invertebrates. Scientific Reports 11(1), 20900. https://doi.org/10.1038/s41598-021-00292-9CrossRefGoogle ScholarPubMed
Vered, G, Kaplan, A, Avisar, D and Shenkar, N (2019) Using solitary ascidians to assess microplastic and phthalate plasticizers pollution among marine biota: A case study of the Eastern Mediterranean and Red Sea. Marine Pollution Bulletin 138, 618625. https://doi.org/10.1016/j.marpolbul.2018.12.013CrossRefGoogle ScholarPubMed
Vergara, D, Hoz-M, J, Ariza-Echeverri, EA, Fernández-Arias, P and Antón-Sancho, Á (2025) Evaluating solutions to marine plastic pollution. Environments 12, 86. https://doi.org/10.3390/environments12030086CrossRefGoogle Scholar
Ward, JE, Levinton, JS and Shumway, SE (2003) Influence of diet on pre-ingestive particle processing in bivalves: I: Transport velocities on the ctenidium. Journal of Experimental Marine Biology and Ecology 293(2), 129149. https://doi.org/10.1016/S0022-0981(03)00218-1CrossRefGoogle Scholar
Ward, JE, Rosa, M and Shumway, SE (2019a) Capture, ingestion, and egestion of microplastics by suspension-feeding bivalves: A 40-year history. Anthropocene Coasts 2(1), 3949. https://doi.org/10.1139/anc-2018-0027CrossRefGoogle Scholar
Weigert, A, Helm, C, Meyer, M, Nickel, B, Arendt, D, Hausdorf, B, SR, Santos, KM, Halanych, Purschke, G, Bleidorn, C, Struck, TH (2014) Illuminating the base of the annelid tree using transcriptomics. Molecular Biology and Evolution 31, 13911401.10.1093/molbev/msu080CrossRefGoogle ScholarPubMed
Weiss, L, Ludwig, W, Heussner, S, Canals, M, Ghiglione, J-F, Estournel, C, Constant, M and Kerhervé, P (2021) The missing ocean plastic sink: Gone with the rivers. Science 373(6550), 107111. https://doi.org/10.1126/science.abe0290CrossRefGoogle ScholarPubMed
Winter, JE (1978) A review on the knowledge of suspension-feeding in lamellibranchiate bivalves, with special reference to artificial aquaculture systems. Aquaculture 13(1), 133. https://doi.org/10.1016/0044-8486(78)90124-2CrossRefGoogle Scholar
Woods, MN, Stack, ME, Fields, DM, Shaw, SD and Matrai, PA (2018) Microplastic fiber uptake, ingestion, and egestion rates in the blue mussel (Mytilus edulis). Marine Pollution Bulletin 137, 638645. https://doi.org/10.1016/j.marpolbul.2018.10.061CrossRefGoogle ScholarPubMed
Wu, Y, Yang, J, Li, Z, He, H, Wang, Y, Wu, H and Wang, L (2022) How does bivalve size influence microplastics accumulation? Environmental Research 214, 113847. https://doi.org/10.1016/j.envres.2022.113847CrossRefGoogle ScholarPubMed
Zhao, S, Ward, JE, Danley, M and Mincer, TJ (2018) Field-based evidence for microplastic in marine aggregates and mussels: Implications for trophic transfer. Environmental Science and Technology 52, 1103811048. https://doi.org/10.1021/acs.est.8b03467CrossRefGoogle ScholarPubMed
Supplementary material: File

Santos et al. supplementary material

Santos et al. supplementary material
Download Santos et al. supplementary material(File)
File 766.8 KB