Hostname: page-component-6bb9c88b65-kfd97 Total loading time: 0 Render date: 2025-07-26T01:08:58.867Z Has data issue: false hasContentIssue false

Prevalence of low scores in the Uniform Data Set version 3.0: Comparison of older adults with and without a self-reported history of traumatic brain injury

Published online by Cambridge University Press:  21 May 2025

Charles E. Gaudet*
Affiliation:
Physical Medicine & Rehabilitation Service, VA Boston Healthcare System, Boston, MA, USA Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
Colleen E. Jackson
Affiliation:
Boston University Alzheimer’s Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
Breton Asken
Affiliation:
Department of Clinical and Health Psychology, University of Florida and 1Florida Alzheimer’s Disease Research Center, Gainesville, FL, USA
Monica Ly
Affiliation:
Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA Boston Medical Center, Neurology, Boston, MA, USA
Caroline Altaras
Affiliation:
Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA Boston Medical Center, Neurology, Boston, MA, USA
Steve Lenio
Affiliation:
Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA Boston Medical Center, Neurology, Boston, MA, USA
Jesse Mez
Affiliation:
Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA Boston Medical Center, Neurology, Boston, MA, USA
Michael L Alosco
Affiliation:
Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA Boston Medical Center, Neurology, Boston, MA, USA
*
Corresponding author: Charles E. Gaudet; Email: charles.gaudet@va.gov

Abstract

Objective:

To assess for differences in low score frequency on cognitive testing amongst older adults with and without a self-reported history of traumatic brain injury (TBI) in the National Alzheimer’s Coordinating Center (NACC) dataset.

Method:

The sample included adults aged 65 or older who completed the Uniform Data Set 3.0 neuropsychological test battery (N = 7,363) and was divided by individuals with and without a history of TBI, as well as cognitive status as measured by the CDR. We compared TBI- and TBI + groups by the prevalence of low scores obtained across testing. Three scores falling at or below the 2nd percentile or four scores at or below the 5th percentile were criteria for an atypical number of low scores. Nonparametric tests assessed associations among low score prevalence and demographics, symptoms of depression, and TBI history.

Results:

Among cognitively normal participants (CDR = 0), older age, male sex and greater levels of depression were associated with low score frequency; among participants with mild cognitive impairment (CDR = 0.5-1), greater levels of depression, shorter duration of time since most recent TBI, and no prior history of TBI were associated with low score frequency.

Conclusions:

Participants with and without a history of TBI largely produced low scores on cognitive testing at similar frequencies. Cognitive status, sex, education, depression, and TBI recency showed variable associations with the number of low scores within subsamples. Future research that includes more comprehensive TBI history is indicated to characterize factors that may modify the association between low scores and TBI history.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agrawal, S., Leurgans, S. E., James, B. D., Barnes, L. L., Mehta, R. I., Dams-O’Connor, K., Mez, J., Bennett, D. A., & Schneider, J. A. (2022). Association of traumatic brain injury with and without loss of consciousness with neuropathologic outcomes in community-dwelling older persons. JAMA Network Open, 5(4), e229311.CrossRefGoogle ScholarPubMed
Barker, M. D., Horner, M. D., & Bachman, D. L. (2010). Embedded indices of effort in the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) in a geriatric sample. The Clinical Neuropsyhchologist, 24(6), 1064-1077.CrossRefGoogle Scholar
Barnes, D. E., Byers, A. L., Gardner, R. C., Seal, K. H., Boscardin, W. J., & Yaffe, K. (2018). Association of mild traumatic brain injury with and without loss of consciousness with dementia in US military veterans. JAMA Neurology, 75(9), 10551061.CrossRefGoogle ScholarPubMed
Beekly, D. L., Ramos, E. M., Lee, W. W., Deitrich, W. D., Jacka, M. E., Wu, J., Hubbard, J. L., Koepsell, T. D., Morris, J. C., & Kukull, W. A. (2007). The national Alzheimer’s coordinating center (NACC) database: The uniform data set. Alzheimer Disease & Associated Disorders, 21(3), 249258.CrossRefGoogle Scholar
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289300.CrossRefGoogle Scholar
Brett, B. L., Gardner, R. C., Godbout, J., Dams-O’Connor, K., & Keene, C. D. (2022). Traumatic brain injury and risk of neurodegenerative disorder. Biological Psychiatry, 91(5), 498507. https://doi.org/10.1016/j.biopsych.2021.05.025 CrossRefGoogle ScholarPubMed
Brooks, B. L., Iverson, G. L., Holdnack, J. A., & Feldman, H. H. (2008). Potential for misclassification of mild cognitive impairment: A study of memory scores on the wechsler memory scale-III in healthy older adults. Journal of the International Neuropsychological Society, 14(3), 463478.CrossRefGoogle ScholarPubMed
Brooks, B. L., Iverson, G. L., & White, T. (2007). Substantial risk of “Accidental MCI” in healthy older adults: Base rates of low memory scores in neuropsychological assessment. Journal of the International Neuropsychological Society, 13, 490500.CrossRefGoogle ScholarPubMed
Brooks, B. L., Iverson, G. L., & White, T. (2009). Advanced interpretation of the neuropsychological assessment battery with older adults: Base rate analyses, discrepancy scores, and interpreting change. Archives of Clinical Neuropsychology, 24(7), 647657.CrossRefGoogle ScholarPubMed
Chanti-Ketterl, M., Pieper, C. F., Yaffe, K., & Plassman, B. L. (2023). Associations between traumatic brain injury and cognitive decline among older male veterans: A twin study. Neurology, 101(18), e1761e1770.https://doi.org/10.1212/WNL.0000000000207819 CrossRefGoogle ScholarPubMed
Crane, P. K., Gibbons, L. E., Dams-O’Connor, K., Trittschuh, E., Leverenz, J. B., Keene, C. D., & Larson, E. B. (2016). Association of traumatic brain injury with late-life neurodegenerative conditions and neuropathologic findings. JAMA Neurology, 73(9), 10621069.CrossRefGoogle ScholarPubMed
Cummings, J. L., Mega, M., Gray, K., Rosenberg-Thompson, S., Carusi, D. A., & Gornbein, J. (1994). The Neuropsychiatric Inventory: Comprehensive assessment of psychopathology in dementia. Neurology, 44(12), 23082314.CrossRefGoogle ScholarPubMed
Dams-O’Connor, K., Cantor, J. B., Brown, M., Dijkers, M. P., Spielman, L. A., & Gordon, W. A. (2014). Screening for traumatic brain injury: Findings and public health implications. The Journal of Head Trauma Rehabilitation, 29(6), 479489. https://doi.org/10.1097/HTR.0000000000000099 CrossRefGoogle Scholar
de Freitas Cardoso, M. G., Faleiro, R. M., de Paula, J. J., Kummer, A., Caramelli, P., Teixeira, A. L., & Miranda, A. S. (2019). Cognitive impairment following acute mild traumatic brain injury. Frontiers in Neurology, 10, 198.CrossRefGoogle ScholarPubMed
Fann, J. R., Ribe, A. R., Pedersen, H. S., Fenger-Gron, M., Christensen, J., Benros, M. E., & Vestergaard, M. (2018). Long-term risk of dementia among people with traumatic brain injury in Denmark: A population-based observational cohort study. Lancet Psychiatry, 5(5), 424431.CrossRefGoogle Scholar
Gaudet, C. E., Iverson, G. L., Kissinger-Knox, A., Van Patten, R., & Cook, N. E. (2022). Clinical outcome following concussion among college athletes with a history of prior concussion: A systematic review. Sports Medicine - Open, 8(1), 134. https://doi.org/10.1186/s40798-022-00528-6 CrossRefGoogle ScholarPubMed
Grewal, K. S., Gowda-Sookochoff, R., Kirk, A., Morgan, D. G., & O’Connell, M. E. (2023). Base rates of low neuropsychological test scores in older adults with subjective cognitive impairment: Findings from a tertiary memory clinic. Applied Neuropsychology: Adult, 17.Google ScholarPubMed
Gu, D., Ou, S., & Liu, G. (2022). Traumatic brain injury and risk of dementia and Alzheimer’s disease: A systematic review and meta-analysis. Neuroepidemiology, 56(1), 416.CrossRefGoogle ScholarPubMed
Holdnack, J. A., Tulsky, D. S., Brooks, B. L., Slotkin, J., Gershon, R., Heinemann, A. W., & Iverson, G. L. (2017). Interpreting patterns of low scores on the NIH toolbox cognition battery. Archives of Clinical Neuropsychology, 32(5), 574584.CrossRefGoogle ScholarPubMed
Ivins, B. J., Arrieux, J. P., Schwab, K. A., Haran, F. J., & Cole, W. R. (2019). Using rates of low scores to assess agreement between brief computerized neuropsychological assessment batteries: A clinically-based approach for psychometric comparisons. Archives of Clinical Neuropsychology, 34(8), 13921408.CrossRefGoogle ScholarPubMed
Karr, J. E., Garcia-Barrera, M. A., Holdnack, J. A., & Iverson, G. L. (2017). Using multivariate base rates to interpret low scores on an abbreviated battery of the delis-kaplan executive function system. Archives of Clinical Neuropsychology, 32(3), 297305.CrossRefGoogle Scholar
Karr, J. E., Rivera Mindt, M. R., & Iverson, G. L. (2022). A multivariate interpretation of the Spanish-language NIH toolbox cognition battery: The normal frequency of low scores. Archives of Clinical Neuropsychology, 37(2), 338351.CrossRefGoogle ScholarPubMed
Kiselica, A. M., Webber, T. A., & Benge, J. F. (2020). Using multivariate base rates of low scores to understand early cognitive declines on the uniform data set 3.0 neuropsychological battery. Neuropsychology, 34, 629640.CrossRefGoogle ScholarPubMed
Kornak, J., Fields, J., Kremers, W., Farmer, S., Heuer, H. W., Forsberg, L., & ARTFL/LEFFTDS Consortium (2019). Nonlinear Z-score modeling for improved detection of cognitive abnormality. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 11, 797808.Google ScholarPubMed
Lennon, M. J., Brooker, H., Creese, B., Thayanandan, T., Rigney, G., Aarsland, D., Hampshire, A., Ballard, C., Corbett, A., & Raymont, V. (2023). Lifetime traumatic brain injury and cognitive domain deficits in late life: The PROTECT-TBI cohort study. Journal of Neurotrauma, 40(13-14), 14231435. https://doi.org/10.1089/neu.2022.0360 CrossRefGoogle ScholarPubMed
Li, Y., Li, Y., Li, X., Zhang, S., Zhao, J., Zhu, X., & Tian, G. (2017). Head injury as a risk factor for Dementia and Alzheimer’s Disease: A systematic review and meta-analysis of 32 observational studies. PLoS ONE, 12(1), e0169650. https://doi.org/10.1371/journal.pone.0169650 CrossRefGoogle ScholarPubMed
LoBue, C., Wadsworth, H., Wilmoth, K., Clem, M., Hart, J. Jr., Womack, K. B., Didehbani, N., Lacritz, L. H., Rossetti, H. C., Cullum, C. M. (2017). Traumatic brain injury history is associated with earlier age of onset of Alzheimer disease. The Clinical Neuropsychologist, 31(1), 8598.CrossRefGoogle ScholarPubMed
Management of Concussion/mTBI Working Group. (2009). VA/DoD clinical practice guideline for management of concussion/Mild traumatic brain injury. Journal of Rehabilitation Research and Development, 46(6), Cp168.CrossRefGoogle Scholar
McCauley, S. R., Wilde, E. A., Barnes, A., Hanten, G., Hunter, J. V., Levin, H. S., & Smith, D. H. (2014). Patterns of early emotional and neuropsychological sequelae after mild traumatic brain injury. Journal of Neurotrauma, 31(10), 914925.CrossRefGoogle ScholarPubMed
Morris, J. C. (1993). The Clinical dementia rating (CDR). Neurology, 43(11), 2412.CrossRefGoogle ScholarPubMed
Romero, K., Coleman, A., Heir, A., Leach, L., & Proulx, G. B. (2022). Multivariate base rates of low neuropsychological test scores in cognitively intact older adults with subjective cognitive decline from a specialist memory clinic. Archives of Clinical Neuropsychology, 37(7), 14671479. https://doi.org/10.1093/arclin/acac050 CrossRefGoogle ScholarPubMed
Sanderson, W., & Scherbov, S. (2008). Rethinking age and aging. Washington, DC: Population Reference Bureau.Google Scholar
Schaffert, J., Chiang, H.-S., Fatima, H., LoBue, C., Hart, J., & Cullum, C. M. (2023). History of traumatic brain injury does not alter course of neurocognitive decline in older adults with and without cognitive impairment. Neuropsychology, 37(8), 923932.CrossRefGoogle Scholar
Schaffert, J., LoBue, C., White, C. L., Chiang, H.-S., Didehbani, N., Lacritz, L., Rossetti, H., Dieppa, M., Hart, J., & Cullum, C. M. (2018). Traumatic brain injury history is associated with an earlier age of dementia onset in autopsy-confirmed Alzheimer’s disease. Neuropsychology, 32(4), 410416.CrossRefGoogle ScholarPubMed
Schmidt, A. F., & Finan, C. (2018). Linear regression and the normality assumption. Journal of Clinical Epidemiology, 98, 146151.CrossRefGoogle ScholarPubMed
Schretlen, D. J., Testa, S. M., Winicki, J. M., Pearlson, G. D., & Gordon, B. (2008). Frequency and bases of abnormal performance by healthy adults on neuropsychological testing. Journal of the International Neuropsychological Society, 14(3), 436445.CrossRefGoogle ScholarPubMed
Shiekh, J. (1986). Geriatric Depression Scale (GDS): Recent evidence and development of a shorter version. Clinical Gerontology : A Guide to Assessment and Intervention, 165173. Google Scholar
Silverberg, N. D., Iverson, G. L., Group, A. B. I. S. I., Cogan, A., Dams-O-Connor, K., Delmonico, R., Graf, M. J. P., Iaccarino, M. A., Kajankova, M., Kamins, J., McCulloch, K. L., McKinney, G., Nagele, D., Panenka, W. J. Rabinowitz, A. R., Reed, N. Wethe, J. V. Whitehair, V., ACRM Mild TBI Diagnostic Criteria Expert Consensus Group, ... & Zemek, R. (2023). The American congress of rehabilitation medicine diagnostic criteria for mild traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 104(8), 13431355.CrossRefGoogle ScholarPubMed
Sugarman, M. A., McKee, A. C., Stein, T. D., Tripodis, Y., Besser, L. M., Martin, B., & Alosco, M. L. (2019). Failure to detect an association between self-reported traumatic brain injury and Alzheimer’s disease neuropathology and dementia. Alzheimers & Dementia, 15(5), 686698.CrossRefGoogle ScholarPubMed
Tripodis, Y., Alosco, M. L., Zirogiannis, N., Gavett, B. E., Chaisson, C., Martin, B., McClean, M. D., Mez, J., Kowall, N., Stern, R. A., & Adamson, M. (2017). The effect of traumatic brain injury history with loss of consciousness on rate of cognitive decline among older adults with normal cognition and Alzheimer’s disease dementia. Journal of Alzheimers Disease, 59(1), 251263.CrossRefGoogle ScholarPubMed
Waltzman, D., Haarbauer-Krupa, J., & Womack, L. S. (2022). Traumatic brain injury in older adults-A public health perspective. JAMA Neurology, 79(5), 437438.CrossRefGoogle ScholarPubMed
Weiner, M. W., Crane, P. K., Montine, T. J., Bennett, D. A., & Veitch, D. P. (2017). Traumatic brain injury may not increase the risk of Alzheimer disease. Neurology, 89(18), 19231925. https://doi.org/10.1212/WNL.0000000000004608 CrossRefGoogle Scholar
Weintraub, S., Besser, L., Dodge, H. H., Teylan, M., Ferris, S., Goldstein, F. C., Giordani, B., Kramer, J., Loewenstein, D., Marson, D., Mungas, D., Salmon, D., Welsh-Bohmer, K., Zhou, X.-H., Shirk, S. D., Atri, A., Kukull, W. A., Phelps, C., & Morris, J. C. (2018). Version 3 of the Alzheimer disease centers’ neuropsychological test battery in the uniform data set (UDS). Alzheimer Disease & Associated Disorders, 32(1), 1017.CrossRefGoogle ScholarPubMed
Weintraub, S., Salmon, D., Mercaldo, N., Ferris, S., Graff-Radford, N. R., Chui, H., Cummings, J., DeCarli, C., Foster, N. L., Galasko, D., Peskind, E., Dietrich, W., Beekly, D. L., Kukull, W. A., & Morris, J. C. (2009). The Alzheimer’s disease centers’ uniform data set (UDS): The neuropsychologic test battery. Alzheimer Disease & Associated Disorders, 23(2), 91101.CrossRefGoogle ScholarPubMed
Supplementary material: File

Gaudet et al. supplementary material 1

Gaudet et al. supplementary material
Download Gaudet et al. supplementary material 1(File)
File 23.1 MB
Supplementary material: File

Gaudet et al. supplementary material 2

Gaudet et al. supplementary material
Download Gaudet et al. supplementary material 2(File)
File 16.1 KB