Hostname: page-component-6bb9c88b65-wr9vw Total loading time: 0 Render date: 2025-07-23T04:55:03.122Z Has data issue: false hasContentIssue false

TORSION BIRATIONAL MOTIVES OF SURFACES AND UNRAMIFIED COHOMOLOGY

Published online by Cambridge University Press:  21 July 2025

Kanetomo Sato*
Affiliation:
Department of Mathematics, https://ror.org/03qvqb743Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
Takao Yamazaki
Affiliation:
Department of Mathematics, https://ror.org/03qvqb743Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan (ytakao@math.chuo-u.ac.jp)

Abstract

Let S and T be smooth projective varieties over an algebraically closed field k. Suppose that S is a surface admitting a decomposition of the diagonal. We show that, away from the characteristic of k, if an algebraic correspondence $T \to S$ acts trivially on the unramified cohomology, then it acts trivially on any normalized, birational and motivic functor. This generalizes Kahn’s result on the torsion order of S. We also exhibit an example of S over $\mathbb {C}$ for which $S \times S$ violates the integral Hodge conjecture.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

In memory of Noriyuki Suwa

The first author is supported by JSPS KAKENHI Grant (JP20K03566). The second author is supported by JSPS KAKENHI Grant (JP21K03153) and by Chuo University Grant for Special Research.

References

Alexeev, V and Orlov, D (2013) Derived categories of Burniat surfaces and exceptional collections. Math. Ann. 357(2), 743759.10.1007/s00208-013-0917-2CrossRefGoogle Scholar
Anderson, G and Pablos Romo, F (2004) Simple proofs of classical explicit reciprocity laws on curves using determinant groupoids over an Artinian local ring. Comm. Algebra 32(1), 79102.10.1081/AGB-120027853CrossRefGoogle Scholar
Artin, M, Grothendieck, A, Verdier, J, Deligne, P and Saint-Donat, B (1973) Théorie des topos et cohomologie étale des schémas, Tome 3. Lecture Notes in Math, vol. 305. Berlin: Springer.10.1007/BFb0081551CrossRefGoogle Scholar
Beauville, A (2009) On the Brauer group of Enriques surfaces. Math. Res. Lett. 16(6), 927934.10.4310/MRL.2009.v16.n6.a1CrossRefGoogle Scholar
Binda, F, Rülling, K and Saito, S (2022) On the cohomology of reciprocity sheaves. Forum Math. Sigma 10, Paper No. e72, 111 pp.10.1017/fms.2022.51CrossRefGoogle Scholar
Bloch, S, Kas, A and Lieberman, D (1976) Zero cycles on surfaces with ${p}_g=0$ , Compos. Math. 33(2), 135145.Google Scholar
Bloch, S and Ogus, A (1974) Gersten’s conjecture and the homology of schemes. Ann. Sci. Ec. Norm. Sup. (4) 7, 181202.10.24033/asens.1266CrossRefGoogle Scholar
Bloch, S and Srinivas, V (1983) Remarks on correspondences and algebraic cycles. Amer. J. Math. 105(5), 12351253.10.2307/2374341CrossRefGoogle Scholar
Chatzistamatiou, A and Levine, M (2017) Torsion orders of complete intersections. Algebra Number Theory 11(8), 17791835.10.2140/ant.2017.11.1779CrossRefGoogle Scholar
Chatzistamatiou, A and Rülling, K (2011) Higher direct images of the structure sheaf in positive characteristic. Algebra Number Theory 5(6), 693775.10.2140/ant.2011.5.693CrossRefGoogle Scholar
Colliot-Thélène, JL (1993) Cycles algébriques de torsion et K-théorie algébrique. In Ballico, E (ed), Arithmetic Algebraic Geometry, Trento 1991. Lecture Notes in Math, vol. 1553. Berlin: Springer, 149.10.1007/BFb0084728CrossRefGoogle Scholar
Colliot-Thélène, JL (1995) Birational invariants, purity and the Gersten conjecture. In Jacob, B and Rosenberg, A (eds), K-theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras, Santa Barbara 1992. Proc. Sympos. Pure Math., vol. 58, Part 1. Providence, RI: Amer. Math. Soc., 164.Google Scholar
Colliot-Thélène, JL, Sansuc, JJ and Soulé, C (1983) Torsion dans le groupe de Chow de codimension deux. Duke Math. J. 50(3), 763801.10.1215/S0012-7094-83-05038-XCrossRefGoogle Scholar
Colliot-Thélène, JL and Voisin, C (2012) Cohomologie non ramifiée et conjecture de Hodge entière. Duke Math. J. 161(5), 735801.10.1215/00127094-1548389CrossRefGoogle Scholar
Conrad, B (2007) Deligne’s notes on Nagata compactifications. J. Ramanujan Math. Soc. 22(3), 205257.Google Scholar
de Jong, AJ (1986) Smoothness, semi-stability and alterations. Publ. Math. Inst. Hautes Études Sci. 83, 5193.10.1007/BF02698644CrossRefGoogle Scholar
Diaz, H (2016) The motive of the Fano surface of lines. Comptes Rendus Mathematique 354(9), 925930.10.1016/j.crma.2016.07.003CrossRefGoogle Scholar
Fulton, W (1998) Intersection Theory, 2nd edn. Ergeb. Math. Grenzgeb. (3), 2. Berlin: Springer.Google Scholar
Galkin, S and Shinder, E (2013) Exceptional collections of line bundles on the Beauville surface. Adv. Math. 244, 10331050.10.1016/j.aim.2013.06.007CrossRefGoogle Scholar
Garbagnati, A and Schütt, M (2012) Enriques surfaces: Brauer groups and Kummer structures. Michigan Math. J. 61(2), 297330.10.1307/mmj/1339011529CrossRefGoogle Scholar
Geisser, T and Levine, M (2001) The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky. J. Reine Angew. Math. 530, 55103.Google Scholar
Gorchinskiy, S and Guletskii, V (2012) Motives and representability of algebraic cycles on threefolds over a field. J. Algebraic Geom. 21(2), 347373.10.1090/S1056-3911-2011-00548-1CrossRefGoogle Scholar
Gorchinskiy, S and Orlov, D (2013) Geometric phantom categories. Publ. Math. Inst. Hautes Études Sci. 117, 329349.10.1007/s10240-013-0050-5CrossRefGoogle Scholar
Gros, M (1985) Classes de Chern et classes des cycles en cohomologie logarithmique. Mém. Soc. Math. Fr. (2) 21, 187.Google Scholar
Gros, M and Suwa, N (1988) La conjecture de Gersten pour les faisceaux de Hodge-Witt logarithmique. Duke Math. J. 57, 615628.10.1215/S0012-7094-88-05727-4CrossRefGoogle Scholar
Guletskii, V and Pedrini, C (2003) The Chow motive of the Godeaux surface. In Beltrametti, MC, Catanese, F, Ciliberto, C, Lanteri, A and Pedrini, C (eds), Algebraic Geometry, A Volume in Memory of Paolo Francia. Berlin: De Gruyter, 179195.Google Scholar
Hulek, K and Schütt, M (2011) Enriques surfaces and Jacobian elliptic K3 surfaces. Math. Z. 268(3–4), 10251056.10.1007/s00209-010-0708-3CrossRefGoogle Scholar
Illusie, L (1979) Complexe de de Rham-Witt et cohomologie cristalline. Ann. Sci. École Norm. Sup. (4) 12(4), 501661.10.24033/asens.1374CrossRefGoogle Scholar
Kahn, B (2017) Torsion order of smooth projective surfaces. With an appendix by J.-L. Colliot-Théléne. Comment. Math. Helv. 92(4), 839857.10.4171/cmh/426CrossRefGoogle Scholar
Kahn, B and Sujatha, R (2016) Birational motives I: Pure birational motives. Ann. K-Theory 1(4), 379440.10.2140/akt.2016.1.379CrossRefGoogle Scholar
Kahn, B and Sujatha, R (2017) Birational motives, II: Triangulated birational motives. Int. Math. Res. Not. IMRN 22, 67786831.Google Scholar
Kai, W, Otabe, S and Yamazaki, T (2022) Unramified logarithmic Hodge-Witt cohomology and $\mathbb{P}^1$ -invariance. Forum Math. Sigma 10, Paper No. e19, 19 pp.10.1017/fms.2022.6CrossRefGoogle Scholar
Merkurjev, A and Suslin, A (1982) K-cohomology of Severi-Brauer varieties and the norm residue homomorphism. Izv. Akad. Nauk SSSR Ser. Mat. 46(5), 10111046.Google Scholar
Mazza, C, Voevodsky, V and Weibel, W (2006) Lecture Notes on Motivic Cohomology. Clay Math. Monogr, 2. Providence, RI: Amer. Math. Soc.Google Scholar
Milne, JS (1976) Duality in the flat cohomology of a surface. Ann. Sci. École Norm. Sup. (4) 9(2), 171201.10.24033/asens.1309CrossRefGoogle Scholar
Paranjape, W (1996) Some spectral sequences for filtered complexes and applications. J. Algebra 186, 793806.10.1006/jabr.1996.0395CrossRefGoogle Scholar
Rojtman, A (1989) The torsion of the group of 0-cycles modulo rational equivalence. Ann. of Math. (2) 111, 553569.10.2307/1971109CrossRefGoogle Scholar
Rost, M (1996) Chow groups with coefficients. Doc. Math. 1(16), 319393.10.4171/dm/16CrossRefGoogle Scholar
Scholl, A (1994) Classical motives. In Jannsen, U, Kleiman, S and Serre, JP (eds), Motives, Seattle 1991. Proc. Sympos. Pure Math., vol 55, Part 1. Providence, RI: Amer. Math. Soc., 163187.Google Scholar
Suslin, A and Voevodsky, V (2000) Bloch-Kato conjecture and motivic cohomology with finite coefficients. In Gordon, B, Lewis, J, Müller-Stach, S, Saito, S and Yui, N (eds), The Arithmetic and Geometry of Algebraic Cycles. NATO Science Series, vol 548. Dordrecht: Kluwer 117189.10.1007/978-94-011-4098-0_5CrossRefGoogle Scholar
Suwa, N (1995) A note on Gersten’s conjecture for logarithmic Hodge-Witt sheaves. K-Theory 9, 245271.10.1007/BF00961667CrossRefGoogle Scholar
Tezuka, M and Yagita, N (2011) The image of the map from group cohomology to Galois cohomology. Trans. Amer. Math. Soc. 363(8), 44754503.10.1090/S0002-9947-2011-05418-8CrossRefGoogle Scholar
Totaro, B (2016) The motive of a classifying space. Geom. Topol. 20(4), 20792133.10.2140/gt.2016.20.2079CrossRefGoogle Scholar
Vishik, A (2023) Torsion motives. Int. Math. Res. Not. https://doi.org/10.1093/imrn/rnad056.CrossRefGoogle Scholar
Voevodsky, V (2000) Cohomological theory of presheaves with transfers. In Voevodsky, V, Suslin, A and Friedlander, EM (eds), Cycles, Transfers, and Motivic Homology Theories. Ann. of Math. Stud., vol. 143. Princeton, NJ: Princeton Univ. Press, 87137.Google Scholar
Voevodsky, V (2000) Triangulated categories of motives over a field. In Voevodsky, V, Suslin, A and Friedlander, EM (eds), Cycles, Transfers, and Motivic Homology Theories. Ann. of Math. Stud., vol. 143. Princeton, NJ: Princeton Univ. Press, 188238.Google Scholar
Voisin, C (1992) Sur les zéro-cycles de certaines hypersurfaces munies d’un automorphisme. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19(4), 473492.Google Scholar
Voevodsky, V (2011) On motivic cohomology with $\mathbb{Z}/l$ -coefficients. Ann. of Math. (2) 174, 401438.10.4007/annals.2011.174.1.11CrossRefGoogle Scholar
Zarhin, Y (2012) Poincaré duality and unimodularity. In Geometry and Arithmetic. EMS Ser. Congr. Rep. Zürich: European Mathematical Society (EMS), 369376. See also a revised version at https://arxiv.org/abs/1112.1429 (2021) for a corrected proof.10.4171/119-1/21CrossRefGoogle Scholar