Hostname: page-component-54dcc4c588-nx7b4 Total loading time: 0 Render date: 2025-10-08T08:18:16.019Z Has data issue: false hasContentIssue false

EXCEPTIONAL PAIRS ON DEL PEZZO SURFACES AND SPACES OF COMPATIBLE FEIGIN-ODESSKII BRACKETS

Published online by Cambridge University Press:  08 October 2025

Alexander Polishchuk*
Affiliation:
Department of Mathematics, University of Oregon , Eugene, OR 97403, USA and National Research University Higher School of Economics, Moscow, Russia
Eric Rains
Affiliation:
Department of Mathematics, California Institute of Technology , Pasadena, CA 91125 (rains@caltech.edu)

Abstract

We prove that for every relatively prime pair of integers $(d,r)$ with $r>0$, there exists an exceptional pair $({\mathcal {O}},V)$ on any del Pezzo surface of degree $4$, such that V is a bundle of rank r and degree d. As an application, we prove that every Feigin-Odesskii Poisson bracket on a projective space can be included into a $5$-dimensional linear space of compatible Poisson brackets. We also construct new examples of linear spaces of compatible Feigin-Odesskii Poisson brackets of dimension $>5$, coming from del Pezzo surfaces of degree $>4$.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bondal, AI (1990) Representations of associative algebras and coherent sheaves. Math. USSR-Izv. 34(1), 2342.10.1070/IM1990v034n01ABEH000583CrossRefGoogle Scholar
Bondal, AI Non-commutative deformations and Poisson brackets on projective spaces. MPI Preprint, 93–67.Google Scholar
Bourbaki, N(1968), Groupes et algèbres de Lie, ch. IV–VI. Paris: Hermann.Google Scholar
Brodmann, M and Schenzel, P (2006) On varieties of almost minimal degree in small codimension. J. Algebra 305, 789801.10.1016/j.jalgebra.2006.03.027CrossRefGoogle Scholar
Cossec, FR and Dolgachev, IV (1989) Enriques Surfaces. Boston: I. Birkhäuser.10.1007/978-1-4612-3696-2CrossRefGoogle Scholar
Chan, D and Lerner, B (2017) Moduli stacks of Serre stable representations in tilting theory. Adv. Math. 312, 588635.10.1016/j.aim.2017.03.027CrossRefGoogle Scholar
Demazure, M (1980) Surfaces de del Pezzo III. In: Séminaire sur les Singularités des Surfaces. Lecture Notes in Math. 777, Springer, Berlin.10.1007/BFb0085872CrossRefGoogle Scholar
Dolgachev, IV (2012) Classical Algebraic Geometry: A Modern View. Cambridge: Cambridge University Press.10.1017/CBO9781139084437CrossRefGoogle Scholar
Dolgachev, IV and Duncan, A (2019) Automorphisms of cubic surfaces in positive characteristic. Izv. Math. 83(3), 424500.10.1070/IM8803CrossRefGoogle Scholar
Feigin, BL and Odesskii, AV (1998) Vector bundles on an elliptic curve and Sklyanin algebras. In: Topics in Quantum Groups and Finite-Type Iinvariants, 6584. Providence, RI: American Mathematical Society.Google Scholar
Geigle, W and Lenzing, H (1987) A class of weighted projective curves arising in representation theory of finite-dimensional algebras. In: Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), Lecture Notes in Math. 1273, Springer, Berlin, 265297.10.1007/BFb0078849CrossRefGoogle Scholar
Gorodentsev, AL (1989) Exceptional bundles on surfaces with a moving anticanonical class. Math. USSR-Izv. 33(1), 6783.10.1070/IM1989v033n01ABEH000813CrossRefGoogle Scholar
Hua, Z and Polishchuk, A (2023) Elliptic bihamiltonian structures from relative shifted Poisson structures. J. Topol. 16, 13891422.10.1112/topo.12315CrossRefGoogle Scholar
Hua, Z and Polishchuk, A (2025) Bosonization of Feigin-Odesskii Poisson varieties. Adv. Math. 462, Paper No. 110096.10.1016/j.aim.2024.110096CrossRefGoogle Scholar
Kuleshov, SA and Orlov, DO (1995) Exceptional sheaves on Del Pezzo surfaces. Izv. Math. 44(3), 479513.10.1070/IM1995v044n03ABEH001609CrossRefGoogle Scholar
Kuznetsov, A (2008) Derived categories of quadric fibrations and intersections of quadrics. Adv. Math. 218(5), 13401369.10.1016/j.aim.2008.03.007CrossRefGoogle Scholar
Lenzing, H (2011) Weighted projective lines and applications. EMS Ser. Congr. Rep., 153187. Zürich: EMS.Google Scholar
Lenzing, H and Meltzer, H (2000) The automorphism group of the derived category for a weighted projective line. Comm. Algebra 28(4), 16851700.10.1080/00927870008826922CrossRefGoogle Scholar
Meltzer, H(2004) Exceptional vector bundles, tilting sheaves and tilting complexes for weighted projective lines. Mem. Amer. Math. Soc. 171, no. 808.Google Scholar
Mukai, S (1987) On the moduli spaces of bundles on K3 surfaces. I. In: Vector Bundles on Algebraic Varieties (Internat. Colloq., Bombay, 1984), 341413. Oxford: Clarendon Press.Google Scholar
Odesskii, A and Wolf, T (2013) Compatible quadratic Poisson brackets related to a family of elliptic curves. J. Geom. Phys. 63, 107117.10.1016/j.geomphys.2012.10.004CrossRefGoogle Scholar
Orlov, D (1993) Projective bundles, monoidal transformations, and derived categories of coherent sheaves. Izv. Math. 41(1), 133141.10.1070/IM1993v041n01ABEH002182CrossRefGoogle Scholar
Polishchuk, A (1997) Algebraic geometry of Poisson brackets. J. Math. Sci. 84, 14131445.10.1007/BF02399197CrossRefGoogle Scholar
Polishchuk, A (1998) Poisson structures and birational morphisms associated with bundles on elliptic curves. Int. Math. Res. Not. 13, 683703.10.1155/S1073792898000415CrossRefGoogle Scholar
Rains, E (2022) Filtered deformations of elliptic algebras. In: Hypergeometry, Integrability and Lie Theory, Contemp. Math. 780, 95154. Providence, RI: Amer. American Mathematical Society.10.1090/conm/780/15689CrossRefGoogle Scholar
Silverman, JH (1994) Advanced Topics in the Arithmetic of Elliptic Curves. New York: Springer Verlag.10.1007/978-1-4612-0851-8CrossRefGoogle Scholar