Hostname: page-component-6bb9c88b65-lm65w Total loading time: 0.006 Render date: 2025-07-24T19:21:16.207Z Has data issue: false hasContentIssue false

SPECIAL RICCI–HESSIAN EQUATIONS ON KÄHLER MANIFOLDS

Published online by Cambridge University Press:  07 July 2025

ANDRZEJ DERDZINSKI*
Affiliation:
Department of Mathematics, The Ohio State University, 231 W. 18th Avenue, Columbus, OH 43210, USA
PAOLO PICCIONE
Affiliation:
Department of Mathematics, School of Sciences, Great Bay University, Dongguan, Guangdong 523000, PR China Permanent address: Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, CEP 05508-900, São Paulo, SP, Brazil e-mail: paolo.piccione@usp.br

Abstract

Special Ricci–Hessian equations on Kähler manifolds $(M,g)$, as defined by Maschler [‘Special Kähler–Ricci potentials and Ricci solitons’, Ann. Global Anal. Geom. 34 (2008), 367–380], involve functions $\tau $ on M and state that, for some function $\alpha $ of the real variable $\tau\kern-0.8pt $, the sum of $\alpha \nabla d\tau\kern-0.8pt $ and the Ricci tensor equals a functional multiple of the metric g, while $\alpha \nabla d\tau\kern-0.8pt $ itself is assumed to be nonzero almost everywhere. Three well-known obvious ‘standard’ cases are provided by (non-Einstein) gradient Kähler–Ricci solitons, conformally-Einstein Kähler metrics, and special Kähler–Ricci potentials. We show that, outside of these three cases, such an equation can only occur in complex dimension two and, at generic points, it must then represent one of three types, for which, up to normalizations, $\alpha =2\cot \tau\kern-0.8pt $, $\alpha =2\coth \tau\kern-0.8pt $, or $\alpha =2\tanh \tau\kern-0.8pt $. We also use the Cartan–Kähler theorem to prove that these three types are actually realized in a ‘nonstandard’ way.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Communicated by Graeme Wilkin

Both authors’ research was supported in part by a FAPESP OSU 2015 Regular Research Award (FAPESP grant: 2015/50265-6).

References

Barros, A. and Ribeiro, E., ‘Some characterizations for compact almost Ricci solitons’, Proc. Amer. Math. Soc. 140 (2012), 10331040.CrossRefGoogle Scholar
Besse, A. L., Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, 10 (Springer-Verlag, Berlin–Heidelberg–New York, 1987).CrossRefGoogle Scholar
Bolton, J., ‘Transnormal systems’, Quart. J. Math. Oxford Ser. (2) 24 (1973), 385395.10.1093/qmath/24.1.385CrossRefGoogle Scholar
Bryant, R. L., Chern, S. S., Gardner, R. B., Goldschmidt, H. L. and Griffiths, P. A., Exterior Differential Systems, Mathematical Sciences Research Institute Publications, 18 (Springer-Verlag, New York, 1991).10.1007/978-1-4613-9714-4CrossRefGoogle Scholar
Calabi, E., ‘Extremal Kähler metrics’, in Seminar on Differential Geometry, Annals of Mathematics Studies, 102 (ed. Yau, S.-T.) (Princeton University Press, Princeton, NJ, 1982), 259290.Google Scholar
Chen, X., LeBrun, C. and Weber, B., ‘On conformally Kähler, Einstein manifolds’, J. Amer. Math. Soc. 21 (2008), 11371168.10.1090/S0894-0347-08-00594-8CrossRefGoogle Scholar
Chow, B., ‘Ricci flow and Einstein metrics in low dimensions’, in: Surveys in Differential Geometry, Volume VI (eds. LeBrun, C. and Wang, M.) (International Press, Boston, MA, 1999), 187220.Google Scholar
Dancer, A. S. and Wang, M. Y., ‘On Ricci solitons of cohomogeneity one’, Ann. Global Anal. Geom. 39 (2011), 259292.CrossRefGoogle Scholar
Derdziński, A., ‘Self-dual Kähler manifolds and Einstein manifolds of dimension four’, Compos. Math. 49 (1983), 405433.Google Scholar
Derdzinski, A., ‘Killing potentials with geodesic gradients on Kähler surfaces’, Indiana Univ. Math. J. 61 (2012), 16431666.10.1512/iumj.2012.61.4687CrossRefGoogle Scholar
Derdzinski, A. and Maschler, G., ‘Local classification of conformally-Einstein Kähler metrics in higher dimensions’, Proc. Lond. Math. Soc. (3) 87 (2003), 779819.10.1112/S0024611503014175CrossRefGoogle Scholar
Derdzinski, A. and Maschler, G., ‘Special Kähler–Ricci potentials on compact Kähler manifolds’, J. reine angew. Math. 593 (2006), 73116.Google Scholar
DeTurck, D. M. and Kazdan, J. L., ‘Some regularity theorems in Riemannian geometry’, Ann. Sci. Éc. Norm. Supér. (4) 14 (1981), 249260.CrossRefGoogle Scholar
Dodson, C. T. J., Trinidad Pérez, M. and Vázquez-Abal, M. E., ‘Harmonic–Killing vector fields’, Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 481490.CrossRefGoogle Scholar
Hamilton, R. S., ‘The Ricci flow on surfaces’, in Mathematics and General Relativity, Santa Cruz, CA, 1986, Contemporary Mathematics, 71 (ed. Isenberg, J. A.) (American Mathematical Society, Providence, RI, 1988), 237262.Google Scholar
Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, Volume I (Interscience, New York, 1963).Google Scholar
Maschler, G., ‘Special Kähler–Ricci potentials and Ricci solitons’, Ann. Global Anal. Geom. 34 (2008), 367380.10.1007/s10455-008-9114-zCrossRefGoogle Scholar
Miyaoka, R., ‘Transnormal functions on a Riemannian manifold’, Differential Geom. Appl. 31 (2013), 130139.CrossRefGoogle Scholar
Nouhaud, O., ‘Transformations infinitésimales harmoniques’, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A573A576.Google Scholar
Pigola, S., Rigoli, M., Rimoldi, M. and Setti, A. G., ‘Ricci almost solitons’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 10 (2011), 757799.Google Scholar
Wang, Q. M., ‘Isoparametric functions on Riemannian manifolds, I’, Math. Ann. 277 (1987), 639646.CrossRefGoogle Scholar
Wang, X. J. and Zhu, X., ‘Kähler–Ricci solitons on toric manifolds with positive first Chern class’, Adv. Math. 188 (2004), 87103.10.1016/j.aim.2003.09.009CrossRefGoogle Scholar