Hostname: page-component-6bb9c88b65-bw5xj Total loading time: 0 Render date: 2025-07-25T23:55:34.886Z Has data issue: false hasContentIssue false

DUALITY FOR CLANS: AN EXTENSION OF GABRIEL–ULMER DUALITY

Published online by Cambridge University Press:  15 May 2025

JONAS FREY*
Affiliation:
UNIVERSITÉ SORBONNE PARIS NORD CNRS, LABORATOIRE D’INFORMATIQUE DE PARIS NORD, LIPN F-93430 VILLETANEUSE FRANCE

Abstract

Clans are categorical representations of generalized algebraic theories that contain more information than the finite-limit categories associated to the locally finitely presentable categories of models via Gabriel–Ulmer duality. Extending Gabriel–Ulmer duality to account for this additional information, we present a duality theory between clans and locally finitely presentable categories equipped with a weak factorization system of a certain kind.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adamek, J., On quasivarieties and varieties as categories . Studia Logica:An International Journal for Symbolic Logic , vol. 78 (2004), no. 1-2, pp. 733.CrossRefGoogle Scholar
Adámek, J. and Rosicky, J., Locally Presentable and Accessible Categories , London Mathematical Society Lecture Note Series, 189, Cambridge University Press, Cambridge, 1994.CrossRefGoogle Scholar
Adámek, J., Rosický, J., and Vitale, E.M., Algebraic Theories: A Categorical Introduction to General Algebra , Cambridge Tracts in Mathematics, 184, Cambridge University Press, Cambridge, 2010.CrossRefGoogle Scholar
Ahrens, B., North, P., Shulman, M., and Tsementzis, D., A higher structure identity principle , Proceedings of the 2020 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2020 , Association for Computing Machinery, New York, 2020, pp. 5366.Google Scholar
Ahrens, B., North, P., Shulman, M., and Tsementzis, D., The univalence principle, arXiv preprint, 2021.Google Scholar
Baues, H.J., Algebraic Homotopy , Cambridge Studies in Advanced Mathematics, vol. 15, Cambridge University Press, Cambridge, 1989.CrossRefGoogle Scholar
Bergner, J., A survey of $(\infty, 1)$ -categories, Towards Higher Categories, IMA Volumes in Mathematics and its Application , vol. 152, Springer, New York, 2010, pp. 6983.CrossRefGoogle Scholar
Borceux, F., Handbook of categorical algebra. 1 , Encyclopedia of Mathematics and its Applications , vol. 50, Cambridge University Press, Cambridge, 1994.Google Scholar
Bourke, J. and Garner, R., Two-dimensional regularity and exactness . Journal of Pure and Applied Algebra , vol. 218 (2014), no. 7, pp. 13461371.CrossRefGoogle Scholar
Brandenburg, M., Large limit sketches and topological space objects, arXiv Preprint, 2021, arXiv:2106.11115.Google Scholar
Carboni, A. and Vitale, E.M., Regular and exact completions . Journal of Pure and Applied Algebra , vol. 125 (1998), no. 1-3, pp. 79116.CrossRefGoogle Scholar
Cartmell, J., Generalised Algebraic Theories and Contextual Categories , Ph.D. thesis, Oxford University, 1978. https://ncatlab.org/nlab/files/Cartmell-Thesis.pdf.Google Scholar
Cartmell, J., Generalised algebraic theories and contextual categories . Annals of Pure and Applied Logic , vol. 32 (1986), pp. 209243.CrossRefGoogle Scholar
Cesnavicius, K. and Scholze, P., Purity for flat cohomology. Annals of Mathematics, vol. 199 (2024), no. 1, pp. 51180.Google Scholar
Freyd, P., Aspects of topoi . Bulletin of the Australian Mathematical Society , vol. 7 (1972), no. 1, pp. 176.CrossRefGoogle Scholar
Gabriel, P. and Ulmer, F., Lokal präsentierbare kategorien , Lecture Notes in Mathematics, 221, Springer-Verlag, Cham, 1971.CrossRefGoogle Scholar
Garner, R., Combinatorial structure of type dependency . Journal of Pure and Applied Algebra , vol. 219 (2015), no. 6, pp. 18851914.CrossRefGoogle Scholar
Head, T., Expanded subalphabets in the theories of languages and semigroups . International Journal of Computer Mathematics. Section A. Programming Theory and Methods. Section B. Computational Methods , vol. 12, (1982/83), no. 2, pp. 113123.Google Scholar
Henry, S., Algebraic models of homotopy types and the homotopy hypothesis, Preprint, 2016, arXiv:1609.04622.Google Scholar
Higman, G. and Neumann, B. H., Groups as groupoids with one law . Publicationes Mathematicae Debrecen , vol. 2 (1952), pp. 215221.CrossRefGoogle Scholar
Hirschhorn, P.S., Overcategories and undercategories of cofibrantly generated model categories . Journal of Homotopy and Related Structures , vol. 16 (2021), no. 4, pp. 753768.CrossRefGoogle Scholar
Hirschowitz, A. and Simpson, C., Descente pour les n-champs (descent for n-stacks), arXiv preprint, 1998.Google Scholar
Hofmann, M., Extensional constructs in intensional type theory, CPHC/BCS Distinguished Dissertations , Springer-Verlag London, London, 1997.CrossRefGoogle Scholar
Hovey, M., Model Categories , Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999.Google Scholar
Johnstone, P.T., Sketches of an Elephant: a Topos Theory Compendium , vol. 2, Oxford Logic Guides, vol. 44, Oxford University Press, Oxford, 2002.Google Scholar
Joyal, A., Notes on clans and tribes, Preprint, 2017, arXiv:1710.10238.Google Scholar
Lawvere, F.W., Functorial semantics of algebraic theories . Proceedings of the National Academy of Sciences of the United States of America , vol. 50 (1963), no. 5, pp. 869.CrossRefGoogle ScholarPubMed
Subramaniam, C. L., From dependent type theory to higher algebraic structures, Preprint, 2021.Google Scholar
Lurie, J., Higher Topos Theory , vol. 170, Princeton University Press, Princeton, NJ, 2009.CrossRefGoogle Scholar
Lurie, J., Higher algebra, Unpublished, 2017, Available at https://www.math.ias.edu/~lurie/.Google Scholar
Lane, S. Mac, Categories for the Working Mathematician , second ed, Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998.Google Scholar
Makkai, M., First order logic with dependent sorts, with applications to category theory, Preprint, 1995.Google Scholar
Makkai, M., Rosicky, J., and Vokrinek, L., On a fat small object argument . Advances in Mathematics , vol. 254 (2014), pp. 4968.CrossRefGoogle Scholar
Palmgren, E. and Vickers, S. J., Partial horn logic and Cartesian categories . Annals of Pure and Applied Logic , vol. 145 (2007), no. 3, pp. 314353.CrossRefGoogle Scholar
Peschke, G. and Tholen, W., Diagrams, fibrations, and the decomposition of colimits, arXiv Preprint, 2020, arXiv:2006.10890.Google Scholar
Pitts, A.M., Categorical Logic, Handbook of Logic in Computer Science , vol. 5, Oxford Univ. Press, New York, 2000, pp. 39128.Google Scholar
Pultr, A., The right adjoints into the categories of relational systems , Reports of the Midwest Category Seminar, IV , Lecture Notes in Mathematics, vol. 137, Springer, Berlin, 1970, pp. 100113.CrossRefGoogle Scholar
Rezk, C., A model for the homotopy theory of homotopy theory . Transactions of the American Mathematical Society , vol. 353 (2001), no. 3, pp. 9731007.CrossRefGoogle Scholar
Riehl, E., Categorical Homotopy Theory , New mathematical monographs, vol. 24, Cambridge University Press, Cambridge, 2014.CrossRefGoogle Scholar
Rosický, J., On homotopy varieties . Advances in Mathematics , vol. 214 (2007), no. 2, pp. 525550.CrossRefGoogle Scholar
Taylor, P., Recursive Domains, Indexed Category Theory and Polymorphism , Ph.D. thesis, University of Cambridge, 1987.Google Scholar
Taylor, P., Practical Foundations of Mathematics , Cambridge Studies in Advanced Mathematics, 59, Cambridge University Press, Cambridge, 1999.Google Scholar
The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations of Mathematics , Institute for Advanced Study, 2013, https://homotopytypetheory.org/book.Google Scholar