Hostname: page-component-54dcc4c588-64p75 Total loading time: 0 Render date: 2025-10-07T22:32:42.866Z Has data issue: false hasContentIssue false

PFA AND THE DEFINABILITY OF THE NONSTATIONARY IDEAL

Part of: Set theory

Published online by Cambridge University Press:  11 April 2025

STEFAN HOFFELNER
Affiliation:
INSTITUT FÜR MATHEMATISCHE LOGIK UNIVERSITÄT MÜNSTER EINSTEINSTR. 62, MÜNSTER GERMANY E-mail: stefan.hoffelner@gmx.at E-mail: rds@uni-muenster.de
PAUL LARSON*
Affiliation:
DEPARTMENT OF MATHEMATICS MIAMI UNIVERSITY OXFORD, OHIO 45056
RALF SCHINDLER
Affiliation:
INSTITUT FÜR MATHEMATISCHE LOGIK UNIVERSITÄT MÜNSTER EINSTEINSTR. 62, MÜNSTER GERMANY E-mail: stefan.hoffelner@gmx.at E-mail: rds@uni-muenster.de
LIUZHEN WU
Affiliation:
INSTITUTE OF MATHEMATICS ACADEMY OF MATHEMATICS AND SYSTEMS SCIENCE CHINESE ACADEMY OF SCIENCES BEIJING 100190 CHINA and SCHOOL OF MATHEMATICAL SCIENCES UNIVERSITY OF CHINESE ACADEMY OF SCIENCES BEIJING 100049 CHINA E-mail: lzwu@math.ac.cn

Abstract

We produce, relative to a $\textsf {ZFC}$ model with a supercompact cardinal, a $\textsf {ZFC}$ model of the Proper Forcing Axiom in which the nonstationary ideal on $\omega _1$ is $\Pi _1$-definable in a parameter from $H_{\aleph _2}$.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Foreman, M., Magidor, M., and Shelah, S., Martin’s maximum, saturated ideals, and non-regular ultrafilters. Part I . Annals of Mathematics, vol. 127 (1988), no. 1, pp. 147.10.2307/1971415CrossRefGoogle Scholar
Fuchs, U., Donder’s version of revised countable support, preprint, 2008. arxiv.org/pdf/math/9207204v1.pdf.Google Scholar
Hoffelner, S., Larson, P., Schindler, R., and Wu, L., Forcing axioms and the definability of  $\kern1.2pt{\sf NS}_{\omega_1}$ . Journal of Symbolic Logic, vol. 89 (2024), no. 4, pp. 16411658.10.1017/jsl.2023.40CrossRefGoogle Scholar
Jech, T., Set Theory, Springer-Verlag, Berlin, 2003.Google Scholar
Kunen, K., Set Theory: An Introduction to Independence Proofs, North Holland, Amsterdam-New York, 1980.Google Scholar
Larson, P., The size of $\overset{\sim }{T}$ . Archive for Mathematical Logic, vol. 39 (2000), pp. 541568.10.1007/s001530050164CrossRefGoogle Scholar
Larson, P., The Stationary Tower, University Lecture Series, 32, American Mathematical Society, Providence, RI, 2004.Google Scholar
Laver, R., Making the supercompactness of $\kappa$ indestructible under $\kappa$ -directed closed forcing . Israel Journal of Mathematics, vol. 29 (1978), no. 4, pp. 385388.10.1007/BF02761175CrossRefGoogle Scholar
Lücke, P., Schlicht, P., and Schindler, R., Lightface definable subsets of ${H}_{\omega_2}$ . The Journal of Symbolic Logic, vol. 82 (Sep. 2017), no. 3, pp. 11061131.10.1017/jsl.2017.36CrossRefGoogle Scholar
Miyamoto, T., A limit stage construction for iterating semiproper preorders , Proceedings of the 7th and 8th Asian Logic Conferences, Singapore University Press, Singapore, 2003, pp. 303327.10.1142/9789812705815_0013CrossRefGoogle Scholar
Schindler, R. and Sun, X., in preparation.Google Scholar
Shelah, S., Proper and Improper Forcing, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1998.10.1007/978-3-662-12831-2CrossRefGoogle Scholar
Woodin, W. H., The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, de Gruyter, Berlin, 1999.10.1515/9783110804737CrossRefGoogle Scholar