Hostname: page-component-cb9f654ff-5jtmz Total loading time: 0 Render date: 2025-08-16T09:11:51.210Z Has data issue: false hasContentIssue false

Electrodynamics of turbulent fluids with fluctuating electric conductivity

Published online by Cambridge University Press:  22 June 2020

G. Rüdiger*
Affiliation:
Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany University of Potsdam, Institute of Physics and Astronomy, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
M. Küker
Affiliation:
Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany
P. J. Käpylä
Affiliation:
Institut für Astrophysik, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany ReSoLVE Centre of Excellence, Department of Computer Science, P.O. Box 15400, FI-00076 Aalto, Finland
*
Email address for correspondence: gruediger@aip.de

Abstract

Consequences of fluctuating microscopic conductivity in mean-field electrodynamics of turbulent fluids are formulated and discussed. If the conductivity fluctuations are assumed to be uncorrelated with the velocity fluctuations then only the turbulence-originated magnetic diffusivity of the fluid is reduced and the decay time of a large-scale magnetic field or the cycle times of oscillating turbulent dynamo models are increased. If, however, the fluctuations of conductivity and flow in a certain well-defined direction are correlated, an additional diamagnetic pumping effect results, transporting the magnetic field in the opposite direction to the diffusivity flux vector $\langle \unicode[STIX]{x1D702}^{\prime }\boldsymbol{u}^{\prime }\rangle$. In the presence of global rotation, even for homogeneous turbulence fields, an alpha effect appears. If the characteristic values of the outer core of the Earth or the solar convection zone are applied, the dynamo number of the new alpha effect does not reach supercritical values to operate as an $\unicode[STIX]{x1D6FC}^{2}$-dynamo but oscillating $\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FA}$-dynamos with differential rotation are not excluded.

Information

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Brandenburg, A., Moss, D. & Tuominen, I. 1992 Turbulent pumping in the solar dynamo. In The Solar Cycle (ed. Harvey, K. L.), Astronomical Society of the Pacific Conference Series, vol. 27, p. 536.Google Scholar
Gressel, O., Ziegler, U., Elstner, D. & Rüdiger, G. 2008 Dynamo coefficients from local simulations of the turbulent ISM. Astron. Nachr. 329, 619.CrossRefGoogle Scholar
Käpylä, P. J., Korpi, M. J. & Brandenburg, A. 2009 Alpha effect and turbulent diffusion from convection. Astron. Astrophys. 500, 633646.CrossRefGoogle Scholar
Kitchatinov, L. L., Pipin, V. V. & Rüdiger, G. 1994 Turbulent viscosity, magnetic diffusivity, and heat conductivity under the influence of rotation and magnetic field. Astron. Nachr. 315, 157170.CrossRefGoogle Scholar
Krause, F. & Rädler, K. H. 1980 Mean-field Magnetohydrodynamics and Dynamo Theory. Pergamon Press.Google Scholar
Krause, F. & Roberts, P. H. 1973 Some problems of mean field electrodynamics. Astrophys. J. 181, 977992.CrossRefGoogle Scholar
Moss, D., Tuominen, I. & Brandenburg, A. 1990 Buoyancy-limited thin shell dynamos. Astron. Astrophys. 240, 142149.Google Scholar
Ossendrijver, M., Stix, M. & Brandenburg, A. 2001 Magnetoconvection and dynamo coefficients. Dependence of the alpha effect on rotation and magnetic field. Astron. Astrophys. 376, 713726.CrossRefGoogle Scholar
Ossendrijver, M., Stix, M., Brandenburg, A. & Rüdiger, G. 2002 Magnetoconvection and dynamo coefficients. II. Field-direction dependent pumping of magnetic field. Astron. Astrophys. 394, 735745.CrossRefGoogle Scholar
Pétrélis, F., Alexakis, A. & Gissinger, C. 2016 Fluctuations of electrical conductivity: a new source for astrophysical magnetic fields. Phys. Rev. Lett. 116 (16), 161102.CrossRefGoogle ScholarPubMed
Roberts, P. H. 1972 Kinematic dynamo models. Phil. Trans. R. Soc. Lond. A 272 (1230), 663698.Google Scholar
Rogers, T. M. & McElwaine, J. N. 2017 The hottest hot Jupiters may host atmospheric dynamos. Astrophys. J. Lett. 841 (2), L26.Google Scholar
Rüdiger, G. & Brandenburg, A. 2014 $\unicode[STIX]{x1D6FC}$ effect in a turbulent liquid–metal plane Couette flow. Phys. Rev. E 89 (3), 033009.Google Scholar
Rüdiger, G., Elstner, D. & Schultz, M. 1993 Dynamo-driven accretion in galaxies. Astron. Astrophys. 270, 5359.Google Scholar
Rüdiger, G., Kitchatinov, L. L. & Hollerbach, R. 2013 Magnetic Processes in Astrophysics: Theory, Simulations, Experiments. Wiley-VCH.CrossRefGoogle Scholar
Rüdiger, G. & Küker, M. 2016 The influence of helical background fields on current helicity and electromotive force of magnetoconvection. Astron. Astrophys. 592, A73.CrossRefGoogle Scholar
Spitzer, L. 1962 Physics of Fully Ionized Gases. Interscience.Google Scholar
Stix, M. 1989 The Sun. An Introduction. Springer.Google Scholar