Hostname: page-component-54dcc4c588-2bdfx Total loading time: 0 Render date: 2025-10-08T01:32:01.019Z Has data issue: false hasContentIssue false

Spatial distribution of self-seeded air lasers induced by the femtosecond laser filament plasma

Published online by Cambridge University Press:  18 September 2024

Tao Zeng*
Affiliation:
School of Physical Science and Technology, Chongqing key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, PR China
Nan Li
Affiliation:
School of Physical Science and Technology, Chongqing key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, PR China
Yuliang Yi
Affiliation:
School of Physical Science and Technology, Chongqing key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, PR China
*
Email address for correspondence: taozeng@swu.edu.cn

Abstract

The femtosecond laser filament-induced air laser plays a significant role for the remote sensing of air pollutants. The spatial distributions of air laser intensity were investigated experimentally in previous studies. However, the mechanism of the air laser propagation properties inside the filament plasma has not been quite clear yet. Moreover, few studies have been dedicated to the reproduction of the air laser profile from nitrogen molecules propagating in the filament plasma based on the numerical simulation method. In this study, the lasing action of the air laser from the transition of the first negative (0,0) band of nitrogen ions at 391 nm was simulated during the femtosecond laser filamentation. The beam profile of the air laser changes from a Gaussian or super-Gaussian shape to an outer ring structure by increasing the filament length or nitrogen ion density, which is in accord with the previous experimental result. A multiple-diffraction effect has been proposed to clarify the mechanism of the outer rings beam pattern formation, which is induced by the dynamical interaction between the lasing effect and diffraction effect of the air laser propagating inside the filament plasma. In addition, the amplified air laser power as a function of both the filament length and nitrogen ion density was investigated. Our study would pave the way to improve the energy conversion efficiency and directivity of remote air lasers, which would be significant for remote sensing applications.

Information

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akozbek, N., Scalora, M., Bowden, C.M. & Chin, S.L. 2001 White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air. Opt. Commun. 191, 353362.10.1016/S0030-4018(01)01113-0CrossRefGoogle Scholar
Bahati, E.M., Jureta, J.J., Belic, D.D., Cherkani-Hassani, H., Abdellahi, M.O. & Defrance, P. 2001 Electron impact dissociation and ionization of $\textrm{N}_2^ +$. J. Phys. B 34, 29632973.CrossRefGoogle Scholar
Berge, L., Skupin, S., Nuter, R., Kasparian, J. & Wolf, J.-P. 2007 Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 70, 1633.CrossRefGoogle Scholar
Brian, J. & Mitchell, A. 1990 The dissociative recombination of molecular ions. Phys. Rep. 186, 215248.10.1016/0370-1573(90)90159-YCrossRefGoogle Scholar
Chauveau, S., Perrin, M.Y., Riviere, P. & Soufiani, A. 2002 Contributions of diatomic molecular electronic systems to heated air radiation. J. Quant. Spectrosc. Radiat. Transfer 72, 503530.10.1016/S0022-4073(01)00141-8CrossRefGoogle Scholar
Chin, S.L., Hosseini, S.A., Liu, W., Luo, Q., Theberge, F., Akozbek, N., Becker, A., Kandidov, V.P., Kosareva, O.G. & Schroeder, H. 2005 The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges. Can. J. Phys. 83, 863.10.1139/p05-048CrossRefGoogle Scholar
Chiron, A., Lamouroux, B., Lange, R., Ripoche, J.F., Franco, M., Prade, B., Bonnaud, G., Riazuelo, G. & Mysyrowicz, A. 1999 Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases. Eur. Phys. J. D 6, 383.10.1007/s100530050322CrossRefGoogle Scholar
Chu, W., Li, G., Xie, H., Ni, J., Yao, J., Zeng, B., Zhang, H., Jing, C., Xu, H., Cheng, Y. & Xu, Z. 2013 A self-induced white light seeding laser in a femtosecond laser filament. Laser Phys. Lett. 11 (1), 015301.10.1088/1612-2011/11/1/015301CrossRefGoogle Scholar
Couairon, A. & Mysyrowicz, A. 2007 Femtosecond filamentation in transparent media. Phys. Rep. 441, 47.10.1016/j.physrep.2006.12.005CrossRefGoogle Scholar
Doering, J.P. & Yang, J. 1996 Comparison of the electron impact cross section for the $\textrm{N}_2^ +$ first negative (0,0) band (λ 3914 Å) measured by optical fluorescence, coincidence electron impact, and photoionization experiments. J. Geophys. Res. 101, 19723.Google Scholar
Dogariu, A., Michael, J.B., Scully, M.O. & Miles, R.B. 2011 High-gain backward lasing in air. Science 331, 442.CrossRefGoogle ScholarPubMed
Dubietis, A., Tamosauskas, G., Fibich, G. & Ilan, B. 2004 Multiple filamentation induced by input-beam ellipticity. Opt. Lett. 29, 11261128.10.1364/OL.29.001126CrossRefGoogle ScholarPubMed
Jain, A., Gupta, D.N. & Suk, H. 2019 Electron–ion recombination effect on electron acceleration by an intense laser pulse. IEEE Trans. Plasma. Sci. 47, 48914897.CrossRefGoogle Scholar
Johnson, A.W. & Fowler, R.G. 1970 Measured lifetimes of rotational and vibrational levels of electronic states of N2. J. Chem. Phys. 53, 6572.10.1063/1.1673834CrossRefGoogle Scholar
Kandidov, V.P., Shlenov, S.A. & Kosareva, O.G. 2009 Filamentation of high-power femtosecond laser radiation. Quant. Electron. 39, 205.CrossRefGoogle Scholar
Kartashov, D., Alisauskas, S., Andriukaitis, G., Pugžlys, A., Shneider, M.N., Zheltikov, A.M., Chin, S.L. & Baltuska, A. 2012 Free-space nitrogen gas laser driven by a femtosecond filament. Phys. Rev. A 86, 033831.CrossRefGoogle Scholar
Kartashov, D. & Shneider, M.N. 2017 Femtosecond filament initiated, microwave heated cavity-free nitrogen laser in air. J. Appl. Phys. 121, 113303.10.1063/1.4978745CrossRefGoogle Scholar
Kasparian, J. & Wolf, J.-P. 2008 Physics and applications of atmospheric nonlinear optics and filamentation. Opt. Express 16, 466.10.1364/OE.16.000466CrossRefGoogle Scholar
Liu, W. 2014 Intensity clamping during femtosecond laser filamentation. Chin. J. Phys. 52, 465.Google Scholar
Liu, Y., Brelet, Y., Point, G., Houard, A. & Mysyrowicz, A. 2013 Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses. Opt. Express 21, 22791.10.1364/OE.21.022791CrossRefGoogle ScholarPubMed
Liu, W. & Chin, S.L. 2007 Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecond-laser-pulse filamentation. Phys. Rev. A 76, 013826.10.1103/PhysRevA.76.013826CrossRefGoogle Scholar
Luo, Q., Liu, W. & Chin, S.L. 2003 Lasing action in air induced by ultrafast laser filamentation. Appl. Phys. B 76, 337.10.1007/s00340-003-1115-9CrossRefGoogle Scholar
Mehr, F.J. & Biondi, M.A. 1969 Electron temperature dependence of recombination of $\textrm{O}_2^ +$ and $\textrm{N}_2^ +$ ions with electrons. Phys. Rev. 181, 264271.CrossRefGoogle Scholar
Ni, J., Chu, W., Jing, C., Zhang, H., Zeng, B., Yao, J., Li, G., Xie, H., Zhang, C., Xu, H., Chin, S.-L., Cheng, Y. & Xu, Z. 2013 Identification of the physical mechanism of generation of coherent $\textrm{N}_2^ +$ emissions in air by femtosecond laser excitation. Opt. Express 21, 8746.10.1364/OE.21.008746CrossRefGoogle Scholar
Sprangle, P., Penano, J., Hafizi, B., Gordon, D. & Scully, M. 2011 Remotely induced atmospheric lasing. Appl. Phys. Lett. 98, 211102.10.1063/1.3584034CrossRefGoogle Scholar
Wang, Q., Ding, P., Wilkins, S.G., Athanasakis-Kaklamanakis, M., Zhang, Y., Liu, Z. & Hu, B. 2023 Theoretical treatment on externally-seeded superradiance from $\textrm{N}_2^ +$ in femtosecond laser filamentation in low-pressure nitrogen. Front. Phys. 10, 1090346.CrossRefGoogle Scholar
Xu, H.L., Azarm, A., Bernhardt, J., Kamali, Y. & Chin, S.L. 2009 The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air. Chem. Phys. 360 (1–3), 171175.10.1016/j.chemphys.2009.05.001CrossRefGoogle Scholar
Xue, J., Zhang, N., Guo, L., Zhang, Z., Qi, P., Sun, L., Gong, C., Lin, L. & Liu, W. 2022 Effect of laser repetition rate on the fluorescence characteristic of a long-distance femtosecond laser filament. Opt. Lett. 47, 56765679.10.1364/OL.474317CrossRefGoogle ScholarPubMed
Yao, J., Chu, W., Liu, Z., Chen, J., Xu, B. & Cheng, Y. 2018 An anatomy of strong-field ionization-induced air lasing. Appl. Phys. B 124, 117.10.1007/s00340-018-6940-yCrossRefGoogle Scholar
Yao, J., Zeng, B., Xu, H., Li, G., Chu, W., Ni, J., Zhang, H., Chin, S.L., Cheng, Y. & Xu, Z. 2011 High-brightness switchable multiwavelength remote laser in air. Phys. Rev. A 84 (5), 051802.CrossRefGoogle Scholar
Yuan, S., Wang, T., Lu, P., Chin, S.L. & Zeng, H. 2014 Humidity measurement in air using filament-induced nitrogen monohydride fluorescence spectroscopy. Appl. Phys. Lett. 104, 091113.CrossRefGoogle Scholar
Yuan, S., Wang, T., Teranishi, Y., Sridharan, A., Lin, S.H., Zeng, H. & Chin, S.L. 2013 Lasing action in water vapor induced by ultrashort laser filamentation. Appl. Phys. Lett. 102, 224102.10.1063/1.4809585CrossRefGoogle Scholar
Zeng, T., Zhao, J.Y., Liu, W. & Chin, S.L. 2014 Backward angular distribution of air lasing induced by femtosecond laser filamentation. Laser Phys. Lett. 11 (7), 075401.10.1088/1612-2011/11/7/075401CrossRefGoogle Scholar
Zhang, X., Lu, Q., Zhang, Z., Fan, Z., Zhou, D., Liang, Q., Yuan, L., Zhuang, S., Dorfman, K. & Liu, Y. 2021 Coherent control of the multiple wavelength lasing of $\textrm{N}_2^ +$: coherence transfer and beyond. Optica 8 (5), 668673.10.1364/OPTICA.417804CrossRefGoogle Scholar
Zhou, D., Zhang, X., Lu, Q., Liang, Q. & Liu, Y. 2020 Time-resolved study of the lasing emission from high vibrational levels of $\textrm{N}_2^ +$. Chin. Opt. Lett. 18, 023201.10.3788/COL202018.023201CrossRefGoogle Scholar