Hostname: page-component-54dcc4c588-5q6g5 Total loading time: 0 Render date: 2025-10-05T22:25:53.676Z Has data issue: false hasContentIssue false

The first evidence of iguanians and scincoids from the lower Eocene of the Cos locality (Phosphorites du Quercy, France)

Published online by Cambridge University Press:  05 August 2025

Andrej Čerňanský*
Affiliation:
Department of Ecology, Laboratory of Evolutionary Biology, Faculty of Natural Sciences, Comenius University in Bratislava , Mlynská dolina, 84215, Bratislava, Slovakia Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
Rodolphe Tabuce
Affiliation:
ISEM, Université de Montpellier , CNRS, IRD, EPHE, Cc 064, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
Dominique Vidalenc
Affiliation:
103 Avenue François Mitterand, 31800 Saint-Gaudens, France
*
Corresponding author: Andrej Čerňanský; Email: cernansky.paleontology@gmail.com

Abstract

Squamate faunas from the lower Eocene of Europe are rare. We here describe pleurodontan iguanian (potentially Geiseltaliellus Kuhn, 1944), scincoid, and Squamata indet. jaw remains from Cos locality (near the Caylus village, southwestern France). The age of the Cos deposit has been proposed to fit the MP 10−11 interval (MP 10b; late Ypresian). Thus, it either corresponds to the end of the Early Eocene Climatic Optimum (EECO) or slightly postdates it. Although very fragmentary, the finds represent the first evidence of these clades in this locality, which is one of the oldest from Phosphorites du Quercy, adding to the squamate paleobiodiversity of the site. Besides iguanians and scincoids, the fauna also includes gekkotans, glyptosaurids, varanoids, and a constrictor snake. Some of the genera from Cos are known solely from this locality, revealing a crucial part of the squamate history in Europe. In the last few years, our knowledge of the Paleocene and especially early Eocene lizard faunas has increased. This allows a better understanding of the faunas and their changes due to temperature changes and migrations. Records are still very sketchy at European localities, but the overall picture is somewhat clearer, even on a smaller scale. A small but visible drop in lizard diversity appears to be present at localities from MP 8−9 relative to those from MP 7, whereas at MP 10, the diversity slightly increased. This appears to correlate well with observed changes in temperature.

Information

Type
Articles
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Handling Editor: Max Langer

References

Augé, M.L., 1987, Confirmation de la présence d’Iguanidae (Reptilia, Lacertilia) dans l’Éocène Européen: Comptes Rendus de l’Académie des Sciences, ser. 2, v. 305, p. 633636.Google Scholar
Augé, M.L., 1990, La faune de lézards et d’amphisbènes (Reptilia, Squamata) du gisement de Dormaal (Belgique, Eocène inférieur): Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre, v. 60, p. 161173.Google Scholar
Augé, M.L., 2003a, La faune de Lacertilia (Reptilia, Squamata) de l’Éocène inférieur de Prémontré (Bassin de Paris, France): Geodiversitas, v. 25, p. 539574.Google Scholar
Augé, M.L., 2003b, Lacertilian faunal change across the Paleocene-Eocene boundary in Europe, in Wing, S.L., Gingerich, P.D., Schmitz, B., and Thomas, E., eds., Causes and Consequences of Globally Warm Climates in the Early Paleogene, Boulder, Colorado: Geological Society of America Special Paper, v. 369, p. 441453, https://doi.org/10.1130/0-8137-2369-8.441Google Scholar
Augé, M.L., 2005, Evolution des lézards du Paléogène en Europe: Mémoires du Muséum National d’Histoire Naturelle, v. 192, p. 1369.Google Scholar
Augé, M.L., 2007, Past and present distribution of iguanid lizards: Arquivos do Museu Nacional, Rio de Janeiro, v. 65, p. 403416.Google Scholar
Augé, M.L., 2012, Amphisbaenians from the European Eocene: a biogeographical review: Palaeobiodiversity and Palaeoenvirinments, v. 92, p. 425443, https://doi.org/10.1007/s12549-012-0104-6CrossRefGoogle Scholar
Augé, M.L., and Pouit, D., 2012, Presence of iguanid lizards in the European Oligocene Lazarus taxa and fossil abundance: Bulletin de la Societe Geologique de France, v. 183, p. 653660, https://doi.org/10.2113/gssgfbull.183.6.653CrossRefGoogle Scholar
Augé, M.L., and Smith, R., 1997, Les Agamidae (Reptilia, Squamata) du Paléogène d’Europe occidentale: Belgian Journal of Zoology, v. 127, p. 123138.Google Scholar
Augé, M.L., and Smith, R., 2002, Nouveaux Lacertidae (Reptilia, Squamata) de l’Eocène inférieur Européen: Belgian Journal of Zoology, v. 131, p. 315.Google Scholar
Augé, M.L, and Smith, R.M., 2009, An assemblage of early Oligocene lizards (Squamata) from the locality of Boutersem (Belgium), with comments on the Eocene-Oligocene transition: Zoological Journal of the Linnean Society, v. 155, p. 148170, https://doi.org/10.1111/j.1096-3642.2008.00435.xCrossRefGoogle Scholar
Augé, M.L., Dion, M., and Phélizon, A., 2021, The lizard (Reptilia, Squamata) assemblage from the Paleocene of Montchenot (Paris Basin, MP6), in Steyer, J.S., Augé, M.L., and Métais, G., eds., Memorial Jean-Claude Rage: a Life of Paleo-herpetologist: Geodiversitas, v. 43, no.17, p. 645661, https://doi.org/10.5252/geodiversitas2021v43a17CrossRefGoogle Scholar
Augé, M.L., Folie, A., Smith, R., Phélizon, A., Gigase, P., and Smith, T., 2022, Revision of the oldest varanid, Saniwa orsmaelensis Dollo, 1923, from the earliest Eocene of northwest Europe: Comptes Rendus Palevol, v. 21, p. 511529, https://doi.org/10.5852/cr-palevol2022v21a25Google Scholar
Bolet, A., 2017, First early Eocene lizards from Spain and a study of the compositional changes between late Mesozoic and early Cenozoic Iberian lizard assemblages: Palaeontologia Electronica, n. 20.2.20A, https://doi.org/10.26879/695CrossRefGoogle Scholar
Caputo, V., 2004, The cranial osteology and dentition in the scincid lizards of the genus Chalcides (Reptilia, Scincidae): Italian Journal of Zoology, v. 2, p. 3545, https://doi.org/10.1080/11250000409356604CrossRefGoogle Scholar
Čerňanský, A., and Augé, M.L., 2013, New species of the genus Plesiolacerta (Squamata: Lacertidae) from the upper Oligocene (MP 28) of southern Germany and a revision of the type species Plesiolacerta lydekkeri: Palaeontology, v. 56, p. 7994, https://doi.org/10.1111/j.1475-4983.2012.01167.xCrossRefGoogle Scholar
Čerňanský, A., and Smith, K.T., 2018, Eolacertidae: a new extinct clade of lizards from the Palaeogene; with comments on the origin of the dominant European reptile group—Lacertidae: Historical Biology, v. 30, p. 9941014, https://doi.org/10.1080/08912963.2017.1327530CrossRefGoogle Scholar
Čerňanský, A., and Syromyatnikova, E.V., 2021, The first pre-Quaternary fossil record of the clade Mabuyidae with a comment on the enclosure of the Meckelian canal in skinks: Papers in Palaeontology, v. 7, p. 195215, https://doi.org/10.1002/spp2.1279CrossRefGoogle Scholar
Čerňanský, A., and Vasilyan, D., 2024, Roots of the European Cenozoic ecosystems: lizards from the Paleocene (~MP 5) of Walbeck in Germany: Fossil Record, v. 27, no. 1, p. 159186, https://doi.org/10.3897/fr.27.e109123CrossRefGoogle Scholar
Čerňanský, A., Klembara, J., and Smith, K.T., 2016a, Fossil lizard from central Europe resolves the origin of large body size and herbivory in giant Canary Island lacertids: Zoological Journal of the Linnean Society, v. 176, p. 861877, https://doi.org/10.1111/zoj.12340CrossRefGoogle Scholar
Čerňanský, A., Klembara, J., and Müller, J., 2016b, The new rare record of the late Oligocene lizards and amphisbaenians from Germany and its impact on our knowledge of the European terminal Palaeogene: Palaeobiodiversity and Palaeoenvironments, v. 96, p. 559587.Google Scholar
Čerňanský, A., Bolet, A., Müller, J., Rage, J.-C., Augé, M.L., and Herrel, A., 2017, A new exceptionally preserved specimen of Dracaenosaurus (Squamata, Lacertidae) from the Oligocene of France as revealed by micro-computed tomography: Journal of Vertebrate Paleontology, v. 37, n. e1384738, https://doi.org/10.1080/02724634.2017.1384738CrossRefGoogle Scholar
Čerňanský, A., and Augé, M.L., Phelizon, A., 2020a, Dawn of Lacertids (Squamata, Lacertidae): new finds from the upper Paleocene and the lower Eocene: Journal of Vertebrate Paleontology, v. 40, n. e1768539, https://doi.org/10.1080/02724634.2020.1768539CrossRefGoogle Scholar
Čerňanský, A., Syromyatnikova, E.V., Kovalenko, E.S., Podurets, K.M., and Kaloyan, A.A., 2020b, The key to understanding the European Miocene Chalcides (Squamata, Scincidae) comes from Asia: the lizards of the East Siberian Tagay locality (Baikal Lake) in Russia: The Anatomical Record—Advances in Integrative Anatomy and Evolutionary Biology, v. 303, p. 19011934, https://doi.org/10.1002/ar.24289Google Scholar
Čerňanský, A., Daza, J.D., Smith, R., Bauer, A.M., Smith, T., and Folie, A., 2022, A new gecko from the earliest Eocene of Dormaal, Belgium—a thermophilic element of the ‘greenhouse world’: Royal Society Open Science, v. 9, n. 220429, https://doi.org/10.1098/rsos.220429CrossRefGoogle Scholar
Čerňanský, A., Tabuce, R., and Vidalenc, D., 2023a, Anguimorph lizards from the lower Eocene (MP 10–11) of the Cos locality, Phosphorites du Quercy, France, and the early evolution of Glyptosaurinae in Europe: Journal of Vertebrate Paleontology, v. 42, no. 5, n. e2211646, https://doi.org/10.1080/02724634.2023.2211646Google Scholar
Čerňanský, A., Daza, J.D., Tabuce, R., Saxton, E., and Vidalenc, D., 2023b, An early Eocene pan-gekkotan from France could represent an extra squamate group that survived the K/Pg extinction: Acta Palaeontologica Polonica, v. 68, no. 4, p. 695708, https://doi.org/10.4202/app.01083.2023Google Scholar
Čerňanský, A., Smith, R., Smith, T., and Folie, A. 2023c, Iguanian lizards (Acrodonta and Pleurodonta) from the earliest Eocene (MP 7) of Dormaal, Belgium: the first stages of these iconic reptiles in Europe: Journal of Vertebrate Paleontology, v. 42, no. 4, n. e2184696, https://doi.org/10.1080/02724634.2023.2184696Google Scholar
Čerňanský, A., Tabuce, R., and Vidalenc, D., 2023d, A replacement name for Sullivania Čerňanský et al., 2023, non Sullivania Palmer, 1947: Journal of Vertebrate Paleontology, v. 42, no. 6, n. e2231254, https://doi.org/10.1080/02724634.2023.2231254Google Scholar
Čerňanský, A., Smith, R., Smith, T., and Folie, A., 2024, Timing of intercontinental faunal migrations: anguimorph lizards from the earliest Eocene (MP 7) of Dormaal, Belgium: Zoological Journal of the Linnean Society, v. 201, n. zlae082, https://doi.org/10.1093/zoolinnean/zlae082Google Scholar
Čerňanský, A., Georgalis, G., Tabuce, R., and Vidalenc, D., 2025, The first snake from the lower Eocene (MP 10−11) of the Cos locality, Phosphorites du Quercy, France, in Georgalis, G.L., Zaher, H., & Laurin, M., eds., Snakes from the Cenozoic of Europe—towards a macroevolutionary and palaeobiogeographic synthesis: Comptes Rendus Palevol, v. 24, p. 6166, https://doi.org/10.5852/cr-palevol2025v24a5CrossRefGoogle Scholar
Cope, E.D., 1864, On the characters of the higher groups of Reptilia, Squamata and especially of the Diploglossa: Proceedings Academy of Natural Sciences of Philadelphia, v. 16, p. 224231.Google Scholar
Cramwinckel, M.J., Huber, M., Kocken, I.J., Agnini, C., Bijl, P.K., et al., 2018, Synchronous tropical and polar temperature evolution in the Eocene: Nature, v. 559, p. 382386, https://doi.org/10.1038/s41586-018-0272-2CrossRefGoogle Scholar
De Stefano, G., 1903, I sauri del Quercy appartenenti alla collezione Rossignol: Atti della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale in Milano, v. 42, p. 382418.Google Scholar
Estes, R., 1983, Sauria terrestria, Amphisbaenia: Handbuch der Paläoherpetologie, Volume 10A: Stuttgart, Fischer, 249 p.Google Scholar
Evans, S., 2008, The skull of Lepidosauria, in Gans, C., Gaunt, A.S., and Adler, K., eds., Biology of the Reptilia: Ithaca, New York, Society for the Study of Amphibians and Reptiles, v. 20, p. 1347.Google Scholar
Folie, A., Sigé, B., and Smith, T., 2005, A new scincomorph lizard from the Palaeocene of Belgium and the origin of Scincoidea in Europe: Naturwissenschaften, v. 92, p. 542546, https://doi.org/10.1007/s00114-005-0043-4CrossRefGoogle Scholar
Folie, A., Smith, R., and Smith, T., 2013, New amphisbaenian lizards from the early Paleogene of Europe and their implications for the early evolution of modern amphisbaenians: Geologica Belgica, v. 16, p. 227235, https://popups.uliege.be/1374-8505/index.php?id=4265Google Scholar
Frost, D.R., Etheridge, R., Janies, D., and Titus, T.A., 2001, Total evidence, sequence alignment, evolution of polychrotid lizards, and a reclassification of the Iguania (Squamata: Iguania): American Museum Novitates, v. 3343, p. 138, https://doi.org/10.1206/0003-0082(2001)343<0001:TESAEO>2.0.CO;2Google Scholar
Gauthier, J.A., 1982, Fossil xenosaurid and anguid lizards from the early Eocene Wasatch Formation, southeast Wyoming, and a revision of the Anguioidea: Contributions to Geology, University of Wyoming, v. 21, p. 754.Google Scholar
Gervais, P., 1848–1852, Zoologie et Paléontologie Françaises (Animaux Vertébrés): ou Nouvelles Recherches sur les Animaux Vivants et Fossils de la France: Paris, Arthus Bertrand, 271 p.CrossRefGoogle Scholar
Godinot, M., Blondel, C., Escarguel, G., Lézin, C., Pélissié, T., Tabuce, R., and Vidalenc, D., 2021, Primates and Plesiadapiformes from Cos (Eocene; Quercy, France): Geobios, v. 66-67, p. 153176, https://doi.org/10.1016/j.geobios.2021.03.004Google Scholar
Haller-Probst, M., 1997, Die Verbreitung der Reptilia in den Klimazonen der Erde: Courier Forschungsinstitut Senckenberg, v. 203, p. 167.Google Scholar
Hyland, E.G., Sheldon, N.D., and Cotton, J.M., 2017, Constraining the early Eocene climatic optimum: a terrestrial interhemispheric comparison: Geological Society of America Bulletin, v. 129, p. 244252, https://doi.org/10.1130/B31493.1CrossRefGoogle Scholar
Inglis, G.N., Bragg, F., Burls, N.J., Cramwinckel, M.J., Evans, D., et al., 2020, Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene-Eocene Thermal Maximum (PETM), and latest Paleocene: Climate of the Past, v. 16, p. 19531968, https://doi.org/10.5194/cp-16-1953-2020Google Scholar
Kosma, R., 2004, The dentitions of Recent and fossil scincomorphan lizards (Lacertilia, Squamata): systematics, functional morphology, paleoecology [Ph.D. dissertation]: Hannover, Germany, University of Hannover, 231 p.Google Scholar
Kuhn, O., 1944, Weitere Lacertilier, insbesondere Iguanidae aus dem Eozän des Geiseltales: Palaeontologische Zeitschrift, v. 23, p. 360366.CrossRefGoogle Scholar
Laurent, Y., Adnet, S., Bourdon, E., Corbalan, D., Danilo, L., et al., 2010, La Borie (Saint-Papoul, Aude): un gisement exceptionnel dans l’Éocène basal du Sud de la France: Bulletin de la Société d’Histoire Naturelle de Toulouse, v. 146, p. 89103.Google Scholar
Laurenti, J.N., 1768, Specimen Medicum, Exhibens Synopsin Reptilium Emendatam cum Experimentis Circa Venena et Antidota Reptilium Austracorum, quod Authoritate et Consensu: Vienna, Joan, Thomae, 217 p.Google Scholar
Legendre, S., Marandat, B., Sige, B., Crochet, J.Y., Godinot, M., Hartenberger, J.L., Sudre, J., Vianey-Liaud, M., Muratet, B., and Astruc, J.-G., 1992, La faune de Mammiferes de Vielase (phosphorites du Quercy, Sud de la France): preuve paleontologique d’une karstification du Quercy des l’Eocene inferieur: Neues Jahrbuch für Geologie und Paläontologie, v. 7, p. 414428.CrossRefGoogle Scholar
Leidy, J., 1870, Description of Emys jeansei, E. haydeni, Baëna arenosa and Saniwa ensidens: Proceedings of the Academy of Natural Sciences, Philadelphia, v. 1870, p. 122.Google Scholar
Lihoreau, F., Yans, J., Benammi, M., Girard, F., Ballas, G., et al., 2025, Impact of the EECO on mammalian faunas: new Ypresian localities from Montpellier (France), a multidisciplinary approach: Proceedings of the Geologists’ Association, v. 136, no. 3, n. 101092, https://doi.org/10.1016/j.pgeola.2025.01.001Google Scholar
Marsh, O.C., 1872, Preliminary description of new Tertiary reptiles: American Journal of Science, v. 4, p. 298309.CrossRefGoogle Scholar
Merrem, B., 1820, Versuch eines Systems der Amphibien: Marburg, Germany, J.C. Kreiger, 191 p., https://doi.org/10.5962/bhl.title.5037CrossRefGoogle Scholar
Oppel, M., 1811, Die Ordnungen, Familien und Gattungen der Reptilien als Prodrom einer Naturgeschichte derselben: Munich, J. Lindauer, 86 p.Google Scholar
Pough, F.H., Andrews, R.M., Cadle, J.E., Crump, M.L., Savitzky, A.H., and Wells, K.D., 2004, Herpetology (third edition): Upper Saddle River, New Jersey, Pearson, 736 p.Google Scholar
Pulou, R., 1980, Jean-André Poumarède et l’industrie des phosphates du Quercy au XIXe siècle: Mémoires de l’Académie des Sciences, Inscriptions et Belles Lettres de Toulouse, v. 16, p. 8392.Google Scholar
Rage, J.-C., 2012, Amphibians and squamates in the Eocene of Europe: what do they tell us?: Palaeobiodiversity and Palaeoenvironments, v. 92, p. 445457, https://doi.org/10.1007/s12549-012-0087-3CrossRefGoogle Scholar
Rage, J.-C., 2013, Mesozoic and Cenozoic squamates of Europe, in Gardner, J.D., and Nydam, R.L., eds., Mesozoic and Cenozoic lissamphibian and squamate assemblages of Laurasia: Palaeobiodiversity and Palaeoenvironments, v. 93, p. 517534, https://doi.org/10.1007/s12549-013-0132-xCrossRefGoogle Scholar
Rage, J.-C., and Augé, M.L., 2003, Amphibians and squamate reptiles from the lower Eocene of Silveirinha (Portugal): Ciências da Terra (UNL), v. 15, p. 103116.Google Scholar
Rage, J.-C., and Augé, M.L., 2010, Squamate reptiles from the middle Eocene of Lissieu (France): a landmark in the middle Eocene of Europe: Geobios, v. 43, p. 253268, https://doi.org/10.1016/j.geobios.2009.08.002CrossRefGoogle Scholar
Rage, J.-C., and Augé, M.L., 2012, Valbro: a new site of vertebrates from the early Oligocene (MP 22) of France (Quercy): 3, amphibians and squamates: Annales de Paléontologie, v. 101, p. 2941, https://doi.org/10.1016/j.annpal.2014.10.002Google Scholar
Roll, U., Feldman, A., Novosolov, M., Allison, A., Bauer, A. M., et al., 2017, The global distribution of tetrapods reveals a need for targeted reptile conservation: Nature Ecology and Evolution, v. 1, p. 16771682, https://doi.org/10.1038/s41559-017-0332-2CrossRefGoogle Scholar
Rossmann, T., 2000, Osteologische Beschreibung von Geiseltaliellus longicaudus Kuhn, 1944 (Squamata: Iguanoidea) aus dem Mittleren Eozän der Fossillagerstätten Geiseltal und Grube Messel (Deutschland), mit einer Revision der Gattung Geiseltaliellus: Palaeontographica Abteilung A, Palaozoologie-Stratigraphie, v. 258, p. 117158, https://doi.org/10.1127/pala/258/2000/117CrossRefGoogle Scholar
Simões, T.R., Caldwell, M.W., Nydam, R.L., and Jiménez-Huidobro, P., 2017, Osteology, phylogeny, and functional morphology of two Jurassic lizard species and the early evolution of scansoriality in geckoes: Zoological Journal of the Linnean Society, v. 180, p. 216241, https://doi.org/10.1111/zoj.12487Google Scholar
Smith, K.T., 2009a, Eocene lizards of the clade Geiseltaliellus from Messel and Geiseltal, Germany, and the early radiation of Iguanidae (Squamata: Iguania): Bulletin Yale Peabody Museum of Natural History, v. 50, p. 219306, https://doi.org/10.3374/014.050.0201CrossRefGoogle Scholar
Smith, K.T., 2009b, A new lizard assemblage from the earliest Eocene (zone Wa0) of the Bighorn Basin, Wyoming, USA: biogeography during the warmest interval of the Cenozoic: Journal of Systematic Palaeontology, v. 7, p. 299358, https://doi.org/10.1017/S1477201909002752CrossRefGoogle Scholar
Smith, K.T., and Georgalis, G.L., 2022, The diversity and distribution of Palaeogene snakes: a review with comments on vertebral sufficiency, in Gower, D., and Zaher, H., eds., The Origin and Early Evolution of Snakes: Cambridge, UK, Cambridge University Press, p. 5584, https://doi.org/10.1017/9781108938891.006CrossRefGoogle Scholar
Smith, K.T., and Habersetzer, J., 2021, The anatomy, phylogenetic relationships, and autecology of the carnivorous lizard ‘Saniwafeisti Stritzke, 1983 from the Eocene of Messel, Germany, in Folie, A., Buffetaut, E., Bardet, N., Houssaye, A., Gheerbrant, E., and Laurin, M., eds., Palaeobiology and palaeobiogeography of amphibians and reptiles: an homage to Jean-Claude Rage: Comptes Rendus Palevol, v. 20, p. 441506.CrossRefGoogle Scholar
Smith, K.T., and Wuttke, M., 2012, From tree to shining sea: taphonomy of the arboreal lizard Geiseltaliellus maarius from Messel, Germany: Palaeobiodiversity and Palaeoenvironments, v. 92, p. 4565, https://doi.org/10.1007/s12549-011-0064-2Google Scholar
Smith, K.T., Čerňanský, A., Scanferla, A., and Schaal, S., 2018, Lizards and snakes: warmth-loving sunbathers, in Smith, K.T., Schaal, S., and Habersetzer, J., eds., Messel, an Ancient Greenhouse Ecosystem: Frankfurt am Main, Senckenberg Gesellschaft für Naturforschung, p. 122147.Google Scholar
Smith, K.T., Comay, O., Maul, L., Wegmüller, F., Le Tensorer, J.M., and Dayan, T. 2021, A model of digestive tooth corrosion in lizards: experimental tests and taphonomic implications: Scientific Reports, v. 11, no. 1, n. 12877, https://doi.org/10.1038/s41598-021-92326-5CrossRefGoogle Scholar
Stritzke, R., 1983, Saniwa feisti n. sp., ein Varanide (Lacertilia, Reptilia) aus dem Mittel-Eozän von Messel bei Darmstadt: Senckenbergiana Lethaea, v. 64, p. 497508.Google Scholar
Sullivan, R.M., Augé, M.L., Wille, E., and Smith, R., 2012, A new glyptosaurine lizard from the earliest Eocene of Dormaal, Belgium: Bulletin de la Société Géologique de France, v. 183, p. 627633, https://doi.org/10.2113/gssgfbull.183.6.627Google Scholar
Sumida, S.S., and Murphy, R.W., 1987, Form and function of the tooth crown structure in gekkonid lizards (Reptilia, Squamata, Gekkonidae): Canadian Journal of Zoology, v. 65, p. 28862892.CrossRefGoogle Scholar
Torres-Carvajal, O., de Queiroz, K., and Schulte, J.A. II. 2020, ‘Iguanidae,in de Queiroz, K., Cantino, P.D., and Gauthier, J.A., eds., Phylonyms: a Companion to the PhyloCode, Boca Raton, Florida, CRC Press, p. 11591164.Google Scholar
Vianey-Liaud, M., Vidalenc, D., Orliac, M. J., Maugoust, J., Lézin, C., and Pélissié, T., 2022, Rongeurs de la localité Éocène de Cos (Tarnet-Garonne, Quercy, France): comparaison avec les rongeurs de localités de la transition Éocène inférieur/Éocène moyen: Geodiversitas, v. 44, p. 753800, https://doi.org/10.5252/geodiversitas2022v44a26Google Scholar
Vidal, N., and Hedges, S.B., 2005, The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes: Comptes Rendus Biologies, v. 328, p. 10001008, https://doi.org/10.1016/j.crvi.2005.10.001CrossRefGoogle Scholar
Voigt, F.S., 1832, in Das Thierreich, geordnet nach seiner Organisation: als Grundlage der Naturgeschichte der Thiere und Einleitung in die vergleichende Anatomie vom Baron von Cuvier, Volume 2: Leipzig, F.A. Brockhaus, p. 71.Google Scholar
Westerhold, T., Marwan, N., Drury, A.J., Liebrand, D., Agnini, C., et al., 2020, An astronomically dated record of Earth’s climate and its predictability over the last 66 million years: Science, v. 369, p. 13831387, https://doi.org/10.1126/science.aba6853CrossRefGoogle Scholar
Zachos, J., Dickens, G., and Zeebe, R., 2008, An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics: Nature, v. 451, p. 279283, https://doi.org/10.1038/nature06588CrossRefGoogle Scholar
Zheng, Y., and Wiens, J.J., 2016, Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species: Molecular Phylogenetics and Evolution, v. 94, p. 537547, https://doi.org/10.1016/j.ympev.2015.10.009CrossRefGoogle Scholar