Hostname: page-component-54dcc4c588-br6xx Total loading time: 0 Render date: 2025-10-08T18:57:30.234Z Has data issue: false hasContentIssue false

Biogenic structures produced by foraging birds in marginal marine and marginal lacustrine settings: implications for the rock record

Published online by Cambridge University Press:  19 September 2025

John-Paul Zonneveld*
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada
Brooks Britt
Affiliation:
Brigham Young University, Provo, UT, 84602, USA
Drew Brown
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada
Hilary Corlett
Affiliation:
Department of Earth Sciences, Memorial University of Newfoundland and Labrador, St. Johns, NL, Canada
Murray K. Gingras
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada
Tom Kibblewhite
Affiliation:
Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
Tomohiro Kuwae
Affiliation:
Coastal and Estuarine Environment Research Group, Port and Airport Research Institute, Nagase, Yokosuka, Japan
Ryusuke Kimitsuki
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada
Scott Andrew Melnyk
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada
Sarah Naone
Affiliation:
Brigham Young University, Provo, UT, 84602, USA
Fiona Whitaker
Affiliation:
Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
Zoe E.E. Zonneveld
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
*
Corresponding author: John-Paul Zonneveld; Email: zonnevel@ualberta.ca

Abstract

This contribution identifies biogenic structures created by modern birds foraging in marginal aquatic settings and provides descriptions to facilitate their identification in the rock record. Biogenic structures related to foraging can be separated into those created by bills, such as peck marks, probe marks, gape marks, dabble marks, sweep marks, and bill-stir marks. Biogenic structures created by feet include stir tracks and paddle pits. Peck marks are created during visual foraging and result in shallow, solitary or paired, random or clustered, circular to subcircular pits and grooves. Probe marks are created during tactile foraging but are similar to peck marks, differing solely in their greater depth of penetration. Gape marks are formed when birds open their bill in the sediment resulting in elongated grooves. Dabble marks are larger ovoid divots emplaced by broad-billed waterbirds in subaqueous settings. Bill stirring occurs when a bird swishes its bill in a narrow trend on the sediment surface. Sweep marks are arcuate grooves emplaced in the sediment when long-billed birds forage by sweeping their bill side-to-side across the sediment–water interface.

Birds shuffling their feet in soft sediment is termed ‘foot-stirring’ and results in overprinted, side-by-side trackways. Foot-paddling dewaters the sediment and produces various pit morphologies with massive fill. Trackways emplaced during foraging are commonly characterized by variable stride length, stutter steps, and sudden changes in direction. ‘Trample grounds’ are produced by gregarious foraging flocks of birds. It is anticipated that illustrating and describing the structures produced by these behaviors will facilitate recognition of these commonly overlooked traces.

Information

Type
Memoir
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abbassi, N., Kundrát, M., Ataabadi, M.M., and Ahlberg, P.E., 2015, Avian ichnia and other vertebrate trace fossils from the Neogene Red Beds of Tarom Valley in north-western Iran: Historical Biology, v. 2015, 1104306, https://doi.org/10.1080/08912963.2015.1104306.Google Scholar
Agnolín, F.L., Egli, F. B., Chatterjee, S., Marsá, J.A.E., and Novas, F.E., 2017, Vegaviidae, a new clade of southern diving birds that survived the K/T boundary: The Science of Nature, v. 104, 87, https://doi.org/10.1007/s00114-017-1508-y.CrossRefGoogle ScholarPubMed
Aldrich, T.W., and Paul, D.S., 2002, Avian ecology of Great Salt Lake, in Gwynn, J.W., ed., Great Salt Lake: an overview of change: Utah Department of Natural Resources and Utah Geological Survey Special Publication, Salt Lake City, p. 343374.Google Scholar
Anfinson, O.A., Lockley, M.G., Kim, S.H., Kim, K.S., and Kim, J.K., 2009, First report of the small bird track Koreanaornis from the Cretaceous of North America with implications for avian ichnotaxonomy and paleoecology: Cretaceous Research, v. 30, p. 885894.CrossRefGoogle Scholar
Audobon, J.J., 1838, The Birds of America, Volume 5: Edinburgh, Adam and Charles Black, 664 p.Google Scholar
Audobon, J.J., 1839, Ornithological Biography, or an account of the habits of the birds of the United States of America accompanied by descriptions of the objects represented in the work entitled The Birds of America, and interspersed with delineations of American scenery and manners: Edinburgh, Adam Black, 512 p.Google Scholar
Baird, S.F., 1858, Corvus, Linnaeus, in United States War Department, and United States Army Corps of Engineers, Reports of Explorations and Surveys, to Ascertain the Most Practicable and Economical Route for a Railroad from the Mississippi River to the Pacific Ocean, Vol. IX: Washington, DC, A.O.P. Nicholson, p. 559570.Google Scholar
Baker, A.J., Pereira, S.L., and Paton, T.A., 2007, Phylogenetic relationships and divergence times of Charadriiformes genera: multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds: Biology Letters, v. 3, p. 205209.CrossRefGoogle ScholarPubMed
Barbosa, A., and Moreno, E., 1999, Evolution of foraging strategies in shorebirds: an ecomorphological approach: The Auk, v. 116, p. 712725.Google Scholar
Barcelos-Silveira, A., Dentzien-Dias, P., Francischini, H., and Schultz, ., 2023, Registration, morphology and taphonomy of feeding structures produced by Chilean Flamingos (Phoenicopterus chilensis) in a lagoonal/barrier depositional system in southern Brazil: Journal of South American Earth Sciences, v. 127, 104396, https://doi.org/10.1016/j.jsames.2023.104396.CrossRefGoogle Scholar
Beauchamp, G., 2017, Chapter 3: Diet and foraging behavior, in Anderson, M.J., ed., Flamingos: Behavior, Biology, and Relationship with Humans: New York, Nova Science Publishers, p. 5576.Google Scholar
Bechstein, J.M., 1803, Ornithologisches Taschenbuch von und für Deutschland oder kurxe befchreibung aller Vögel Deutschlands für Liebhaber diefes Theils der Naturgefchichte: Leipzig, Carl Friedrich Enoch Richter, 550 p.Google Scholar
Bechstein, J.M., 1812, Johann Lathams Allgemeine Uebersicht der Vögel aus dem Englischen Übersetzt und mit Anmerkungen und Zusätzen Versehen: Nürnberg, Adam Gottlieb Schneider und Weigel, 348 p.Google Scholar
Beninger, P.G., 2018, Mudflat Ecology: Cham, Switzerland, Springer Nature Switzerland, Aquatic Ecology Series, 429 p.CrossRefGoogle Scholar
Beninger, P.G., and Elner, R.W., 2020, On the tip of the tongue: natural history observations that transformed shorebird ecology: Ecosphere 11, e03133, https://doi.org/10.1002/ecs2.3133. [article also appears in Ecosphere Naturalist]CrossRefGoogle Scholar
Bildstein, K.L., Frederick, P.C., and Spalding, M.G., 1991, Feeding patterns and aggressive behavior in juvenile and adult flamingos: The Condor, v. 93, p. 916925.CrossRefGoogle Scholar
Bohacs, K.M., Hasiotis, S.T., and Demko, T.M., 2007, Continental ichnofossils of the Green River and Wasatch formations, Eocene, Wyoming: a preliminary survey, proposed relation to lake-basin type and application to integrated paleo-environmental interpretation: The Mountain Geologist, v. 44, p. 79108.Google Scholar
Bonaparte, C.L.J.L., 1825, Observations on the nomenclature of Wilson’s Ornithology: Journal of the Academy of Natural Sciences of Philadelphia, v. 5, p. 57106.Google Scholar
Brehm, C.L., 1822, Beiträge zur Vögelkunde in vollständigen Beschreibungen mehrerer neu Entdeckter und vieler seltener, oder nicht gehörig beobachteter deutscher Vögel, Vol. 2: Neustadt an der Orla, Germany, Brehm & Wilhelm Schilling, 788 p.Google Scholar
Brehm, C.L., 1831, Handbuch der Naturgeschichte aller Vögel Deutschlands: Ilmenau, Germany, Bernhard Friedrich Voigt, 1085 p.CrossRefGoogle Scholar
Brewer, E.D., and Falk, A.R., 2021, Neoichnology: why should we care about peck marks and dust baths?: Ethology, Ecology and Evolution, v. 33, p. 9097.Google Scholar
Brewster, W., 1902, An undescribed form of the Black Duck (Anas obscura): The Auk, v. 19, p. 183188.CrossRefGoogle Scholar
Bryant, D.M., and Lang, J., 1975, Feeding distribution and behaviour of Shelduck in relation to food supply: Wildfowl, v. 26, p. 2030.Google Scholar
Bühler, P., 1981, Functional anatomy of avian jaw apparatus, in King, A.S., and McLelland, J., eds., Form and Function in Birds, vol. 2: Academic Press, London, p. 439468.Google Scholar
Burger, J., 1988, Foraging behaviour in gulls: differences in method, prey and habitat: Colonial Waterbirds, v. 11, p. 923.CrossRefGoogle Scholar
Burger, J., and Olla, B.L., 1984, Shorebirds: Migration and Foraging Behavior. Behavior of Marine Animals: Current Perspectives, v. 6: New York and London, Plenum Press Research, 329 p.Google Scholar
Burger, J., Howe, M.A., Hahn, D.C., and Chase, J., 1977, Effects of tide cycles on habitat partitioning by migrating shorebirds: The Auk, v. 94, p. 743758.CrossRefGoogle Scholar
Burger, J., Niles, L., and Clark, K.E., 1997, Importance of beach, mudflat and marsh deposits to migrant shorebirds on Delaware Bay: Biological Conservation, v. 79, p. 283292.CrossRefGoogle Scholar
Burton, P.J.K., 1971, Comparative anatomy of head and neck in the spoon-billed sandpiper, Eurynorhynchus pygmeus and its allies: Journal of Zoology, v. 173, p. 145173.CrossRefGoogle Scholar
Burton, P.J.K., 1972, The feeding techniques of stilt sandpipers and dowitchers: San Diego Society of Natural History Transactions, v. 17, p. 6368.CrossRefGoogle Scholar
Burton, P.J.K., 1974, Feeding and the feeding apparatus in waders: a study of anatomy and adaptations in the Charadrii: London, Trustees of the British Museum (Natural History), 150 p.Google Scholar
Cabanis, J.L., 1857 [1856], Ereunetes mauri: Journal für Ornithologie, v. 4, p. 419421.Google Scholar
Cadée, G.C., 1990, Feeding traces and bioturbation by birds on a tidal flat, Dutch Wadden Sea: Ichnos, v. 1, p. 2330.CrossRefGoogle Scholar
Carmona, N., Bournof, C., Ponce, J.J., and Cuadrado, D., 2011, The role of microbial mats in the preservation of bird footprints: a case study from the mesotidal Bahia Blanca Estuary (Argentina), in Noffke, N., and Chavetz, H., eds., Microbial Mats in Siliciclastic Depositional Systems Through Time: SEPM Special Publication, v. 101, p. 3745.CrossRefGoogle Scholar
Cassin, J., 1858, Aegialitis nivosa, in United States War Department, and United States Army Corps of Engineers, Reports of Explorations and Surveys, to Ascertain the Most Practicable and Economical Route for a Railroad from the Mississippi River to the Pacific Ocean, Vol. IX: Washington, DC, A.O.P. Nicholson, p. 696.Google Scholar
Cavitt, J.F., 2006, Productivity and foraging ecology of two co-existing shorebirds breeding at Great Salt Lake, Utah: 2005–2006 Report: Avian Ecology Laboratory Technical Report, AEL 06-03, Ogden, Utah, Weber State University, 42 p.Google Scholar
Chandler, R., 2017, Shorebirds in Action: an Introduction to Waders and their Behaviour: Caithness, Scotland, Whittles Publishing, 248 p.Google Scholar
Clarke, J.A., Tambussi, C.P., Noriega, J. I., Erickson, G.M., and Ketcham, R.A., 2005, Definitive fossil evidence for the extant avian radiation in the Cretaceous: Nature, v. 433, p. 305308.CrossRefGoogle ScholarPubMed
Colwell, M.A., 2010, Shorebird Ecology, Conservation, and Management: Berkeley, California, University of California Press, 328 p.CrossRefGoogle Scholar
Colwell, M.A., and Oring, L.W., 1988, Habitat use by breeding and migrating shorebirds in southcentral Saskatchewan: The Wilson Bulletin, v. 100, p. 554566.Google Scholar
Conrad, T.A., 1837, Description of new marine shells, from Upper California. Collected by Thomas Nuttall, Esq.: Journal of the Academy of Natural Sciences, Philadelphia, v. 7, p. 227268.Google Scholar
Coues, E., 1861, A monograph of the Tringeae of North America: Proceedings of the Academy of Natural Sciences of Philadelphia: v. 13, p. 170205.Google Scholar
Crewe, T., Barry, K., Davidson, P., and Lepage, D., 2012, Coastal waterbird population trends in the Strait of Georgia 1999–2011. Results from the first 12 years of the British Columbia Coastal Waterbird Survey: British Columbia Birds, v. 22, p. 835.Google Scholar
Cruz, A., 1978, Adaptive evolution in the Jamaican blackbird Nesospar nigerrimus: Scandinavian Journal of Ornithology, v. 9, p. 130137.Google Scholar
Cuadrado, D., Maisano, L., and Quijada, E., 2021, Role of microbial mats and high sedimentation rates in the early burial of footprints in a siliciclastic tidal flat: Journal of Sedimentary Research, v. 91, p. 479494.CrossRefGoogle Scholar
Curray, H.D., 1957, Fossil tracks of Eocene vertebrates, southwestern Uinta Basin, Utah, in Seal, O.G., ed., 8th Annual Field Conference, Guidebook to the Geology of the Uinta Basin: Intermountain Association of Petroleum Geologists, Salt Lake City, Utah, p. 144147.Google Scholar
Dann, P., 1987, Chapter 3: The feeding behaviour and ecology of shorebirds, in Lane, B.A., ed., Shorebirds in Australia: Melbourne, Nelson Publishers, p. 1020.Google Scholar
Dann, P., 1999, Foraging behaviour and diets of red-necked stints and curlew sandpipers in south-eastern Australia: Wildlife Research, v. 27, p. 6168.CrossRefGoogle Scholar
Dashtgard, S.E., and Gingras, M.K., 2005, Facies architecture and ichnology of recent salt-marsh deposits: waterside marsh, New Brunswick, Canada: Journal of Sedimentary Research, v. 75, p. 596607.Google Scholar
Dashtgard, S.E., and Gingras, M.K., 2012, Marine invertebrate neoichnology, in Knaust, D., and Bromley, R.G., eds., Trace Fossils as Indicators of Sedimentary Environments: Developments in Sedimentology: Amsterdam, Elsevier, v. 64, p. 273295.CrossRefGoogle Scholar
Dashtgard, S.E., Pearson, N.J., and Gingras, M.K., 2014. Sedimentology, ichnology and anthropogenic modification of muddy tidal flats in a cold-temperate environment: Chignecto Bay, Canada, in Martini, I.P., and Wanless, H.R., eds., Sedimentary Coastal Zones from High to Low Latitudes: Similarities and Differences: Geological Society, London, Special Publication, v. 388, p. 229245.Google Scholar
Davis, C.A., and Smith, L.M., 2001, Foraging strategies and niche dynamics of coexisting shorebirds at stopover sites in the southern Great Plains: The Auk, v. 118, p. 484495.CrossRefGoogle Scholar
de Valais, S., and Cónsole-Gonella, C., 2019, An updated review of the avian footprint record from the Yacoraite Formation (Maastrichtian–Danian), northwestern Argentina.: Ichnos, v. 26, p. 224241.Google Scholar
de Valais, S., and Melchor, R.N., 2008, Ichnotaxonomy of bird-like footprints: an example from the Late Triassic–Early Jurassic of northwest Argentina: Journal of Vertebrate Paleontology, v. 28, p. 145159.CrossRefGoogle Scholar
Delfino, H.C., and Carlos, C.J., 2021, Behavioural repertoire of a population of wild Chilean flamingos Phoenicopterus chilensis in southern Brazil: Journal of Natural History, v. 55, p. 19571981.CrossRefGoogle Scholar
Delfino, H.C., and Carlos, C.J., 2022, What do we know about flamingo behaviors? A systematic review of the ethological research on the Phoenicopteridae (1978–2020): Acta Ethologica, v. 25, p. 114.CrossRefGoogle Scholar
Dias, M.P., Granadeiro, J.P., and Palmeirim, J.M., 2009, Searching behaviour of foraging waders: does feeding success influence their walking?: Animal Behaviour, v. 77, p. 12031209.CrossRefGoogle Scholar
du Plessis, D.S., and Pillay, D., 2022, Temporal interactions with flamingo (Phoenicopterus roseus) foraging plasticity: basal resources, assemblage structure and benthic heterogeneity: Estuarine, Coastal and Shelf Science, v. 264, 107659, https://doi.org/10.1016/j.ecss.2021.107659.CrossRefGoogle Scholar
Eamer, J., 1985, Winter habitat for dabbling ducks on southeastern Vancouver Island, British Columbia: Environment Canada, Ottawa, 103 p. [also M.S. thesis, Vancouver, British Columbia, University of British Columbia]Google Scholar
Elbroch, M., and Marks, E., 2001, Bird tracks and sign: a guide to North American species: Mechanicsburg, Pennsylvania, Stackpole Books, 456 p.Google Scholar
El-Hacen, E.-H.M., Bouma, T.J., Oomen, P., Piersma, T., and Olff, H., 2019, Large-scale ecosystem engineering by flamingos and fiddler crabs on west-African intertidal flats promote joint food availability: Oikos, v. 128, p. 753764.CrossRefGoogle Scholar
Ellenberger, P., 1980, Sur les empreintes de pas des gros mammifères de l’Eocène supérieur de Garrigues-ste-Eulalie (Gard): Palaeovertebrata, Montpellier, Mémoire Jubilaire en Hommage à R. Lavocat, v. 9, p. 3778.Google Scholar
Elner, R.W., Beninger, P.G., Jackson, D.L., and Potter, T.M., 2005, Evidence of a new feeding mode in western sandpiper (Calidris mauri) and dunlin (Calidris alpina) based on bill and tongue morphology and ultrastructure: Marine Biology, v. 146, p. 12231234.CrossRefGoogle Scholar
Ericson, P.G.P., 2000, Systematic revision, skeletal anatomy, and paleoecology of the New World early Tertiary Presbyornithidae (Aves: Anseriformes): PaleoBios, v. 20, p. 123.Google Scholar
Erickson, B.R., 1967, Fossil bird tracks from Utah: Science Museum of Minnesota Observer, v. 5, p. 140146.Google Scholar
Estrella, S.M., and Masero, J.A., 2007, The use of distal rhynchokinesis by birds feeding in water: Journal of Experimental Biology, v. 210, p. 37573762.CrossRefGoogle ScholarPubMed
Estrella, S.M., Masero, J.A., and Pérez-Hurtado, A., 2007, Small-prey profitability: field analysis of shorebirds’ use of surface tension of water to transport prey: The Auk, v. 124, p. 12441253.CrossRefGoogle Scholar
Falk, A.R., 2011, Tracking Mesozoic birds across the world: Journal of Systematic Palaeontology, v. 9, p. 8590.CrossRefGoogle Scholar
Falk, A.R., Hasiotis, S.T., and Martin, L.D., 2010, Feeding traces associated with bird tracks from the Lower Cretaceous Haman Formation, Republic of Korea: Palaios, v. 25, p. 731741.Google Scholar
Falk, A.R., Lim, J.D., and Hasiotis, S.T., 2014, A behavioral analysis of fossil bird tracks from the Haman Formation (Republic of Korea) shows a nearly modern avian ecosystem: Vertebrata PalAsiatica, v. 52, p. 129152.Google Scholar
Falk, A.R., Hasiotis, S.T., Gong, E., Lim, J.D., and Brewer, E.D., 2017, A new experimental setup for studying avian neoichnology and the effects of grain size and moisture content on tracks: trials using the domestic chicken (Gallus gallus): Palaios, v. 32, p. 689707.CrossRefGoogle Scholar
Feduccia, A., 1978, Presbyornis and the evolution of ducks and flamingos: American Scientist, v. 55, p. 298304.Google Scholar
Feduccia, A., 1980, The Age of Birds: Cambridge, Massachusetts, Harvard University Press, 196 p.Google Scholar
Feduccia, A., 1995, Explosive evolution in Tertiary birds and mammals: Science, v. 267, p. 637638.CrossRefGoogle ScholarPubMed
Ferns, P.N., and Siman, H.Y., 1994, Utility of the curved bill of the curlew Numenius arquata as a foraging tool: Bird Study, v. 41, p. 102109.CrossRefGoogle Scholar
Finn, P.G., Catterall, C.P., and Driscoll, P.V., 2008, Prey versus substrate as determinants of habitat choice in a feeding shorebird: Estuarine, Coastal and Shelf Science, v. 80, p. 381390.CrossRefGoogle Scholar
Fiorillo, A.R., Hasiotis, S.T., Kobayashi, Y., Breithaupt, B.H., and McCarthy, P.J., 2011, Bird tracks from the Upper Cretaceous Cantwell Formation of Denali National Park, Alaska, USA: a new perspective on ancient northern polar vertebrate biodiversity: Journal of Systematic Palaeontology, v. 9, p. 3349.CrossRefGoogle Scholar
Frey, R.W., and Pemberton, S.G., 1987, Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus: Journal of Paleontology, v. 58, p. 333350.Google Scholar
Furlong, C.M., Gingras, M.K., and Zonneveld, J.-P., 2015, Trypanites-type ichnofacies at the Bay of Fundy, Nova Scotia: Palaios, v. 30, p. 258271.Google Scholar
Gallet, É., 1950, The Flamingos of the Camargue: Oxford, UK, Blackwell, 127 p.Google Scholar
Genise, J.F., Melchor, R.N., Archangelsky, M., Bala, L.O., Straneck, R., and de Valais, S., 2009, Application of neoichnological studies to behavioural and taphonomic interpretation of fossil bird-like tracks from lacustrine settings: the Late Triassic–Early Jurassic? Santo Domingo Formation, Argentina: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 272, p. 143161.CrossRefGoogle Scholar
Gihwala, K.N., Pillay, D., and Varughese, M., 2017, Differential impacts of foraging plasticity by Greater Flamingo Phoenicopterus roseus on intertidal soft sediments: Marine Ecology Progress Series, v. 569, p. 227242.CrossRefGoogle Scholar
Gingras, M.K., Pemberton, S.G., Saunders, T.D.A., and Clifton, H.E., 1999, The ichnology of modern and Pleistocene brackish-water deposits at Willapa Bay, Washington: variability in estuarine settings: Palaios, v. 14, p. 352374.CrossRefGoogle Scholar
Gingras, M.K., Pemberton, S.G., and Saunders, T.D.A., 2001, Bathymetry, sediment texture, and substrate cohesiveness; their impact on modern Glossifungites trace assemblages at Willapa Bay, Washington: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 169, p. 121.CrossRefGoogle Scholar
Gingras, M.K., Dashtgard, S.E., MacEachern, J.A., and Pemberton, S.G., 2008a, Biology of shallow marine ichnology: a modern perspective: Aquatic Biology, v. 2, p. 255268.CrossRefGoogle Scholar
Gingras, M.K., Pemberton, S.G., Dashtgard, S., and Dafoe, L., 2008b, How fast do marine invertebrates burrow? Palaeogeography, Palaeoclimatology, Palaeoecology, v. 270, p. 280286.CrossRefGoogle Scholar
Glassom, D., and Branch, G.M., 1997, Impact of predation by greater flamingos Phoenicopterus ruber on the macrofauna of two southern African lagoons: Marine Ecology Progress Series, v. 149, p. 112.CrossRefGoogle Scholar
Gmelin, J.F. 1789, Caroli a Linné, Systema Naturae. 13th Edition: Lipsiae [Leipzig], G.E. Beer, v. 1, pt. 2, p. 5011032.Google Scholar
Grande, L., 1984, Paleontology of the Green River Formation, with a review of the fish fauna: Geological Survey of Wyoming Bulletin, v. 63, p. 1333.Google Scholar
Grande, L., 2013, The Lost World of Fossil Lake: Snapshots from Deep Time: Chicago, University of Chicago Press, 425 p.CrossRefGoogle Scholar
Grant, J., 1984, Sediment microtopography and shorebird foraging: Marine Ecology Progress Series, v. 19, p. 293296.CrossRefGoogle Scholar
Gregory, M.R., 1999, Unusual ‘paddling’ trails left by gulls and ‘aviturbation’ in Rarawa and Mangawhai estuaries, Northland, New Zealand: New Zealand Natural Sciences, v. 24, p. 2734.Google Scholar
Grey, J.E., 1831, Description of a new species of snipe discovered by Charles Hardwicke, Esq., in Van Diemans’s Land: The Zoological Miscellany, v. 1, p. 1620.Google Scholar
Guillemain, M., Houte, S., and Fritz, H., 2000, Activities and food resources of wintering teal (Anas crecca) in a diurnal feeding site: a case study in western France: Revue d’Ecologie, Terre et Vie, Société Nationale de Protection de la Nature, v. 55, p. 171181.Google Scholar
Güldenstädt, J.A., 1775, Schacalae Historia: Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae, v. 20, p. 449482.Google Scholar
Gunnerus, J.E., 1767, Beskrifning på trenne Norrska Sjö-Kråk, Sjö-Pungar kallade: Kungliga Svenska Vetenskaps-Akademiens Handlingar, v. 28, p. 114124.Google Scholar
Hale, P.B., and McCann, S.B., 1982, Rhythmic topography in a mesotidal, low-wave-energy environment: Journal of Sedimentary Petrology, v. 52, p. 415429.Google Scholar
Hall, L.A., Del La Cruz, S.E.W., Woo, I., Kuwae, T., and Takekawa, J.Y., 2021, Age- and sex-related dietary specialization facilitate seasonal resource partitioning in a migratory shorebird: Ecology and Evolution, v. 11, p. 18661876.CrossRefGoogle Scholar
Hamilton, D.J., Barbeau, M.A., and Diamond, A.W., 1975, Shorebirds, mud snails, and Corophium volutator in the upper Bay of Fundy, Canada: predicting bird activity on intertidal mud flats: Canadian Journal of Zoology, v. 81, p. 13581366.CrossRefGoogle Scholar
Hamilton, R.B., 1975, Comparative behavior of the American avocet and the black-necked stilt (Recurvirostridae): Ornithological Monographs, v. 17, 98 p.Google Scholar
Hancock, J.A., Kushlan, J.A., and Kahl, M.P., 1992, Storks, Ibises and Spoonbills of the World: London, Academic Press, 385 p.Google Scholar
Hauck, T.E., Dashtgard, S.E., and Gingras, M.K., 2008, Relationships between organic carbon and pascichnia morphology in intertidal deposits: Bay of Fundy, New Brunswick, Canada: Palaios, v. 23, p. 733.Google Scholar
Healy, E.A., and Wells, G.P., 1959, Three new lugworms (Arenicolidae, Polychaeta) from the North Pacific area: Proceedings of the Zoological Society of London, v. 133, p. 315335.CrossRefGoogle Scholar
Helm, C.W., Lockley, M.G., Cawthra, H.C., De Vynck, J.C., Helm, C.J.Z., and Thesen, G.H.H., 2020, Large Pleistocene avian track on the Cape south coast of South Africa: Journal of African Ornithology, v. 91, p. 275291.CrossRefGoogle Scholar
Hembree, D., 2016, Using experimental neoichnology and quantitative analyses to improve the interpretation of continental trace fossils: Ichnos, v. 23, p. 262297.CrossRefGoogle Scholar
Hendricks, P., and Hendricks, L.M., 2006, Foot paddling by western gulls: Northwestern Naturalist, v. 87, p. 246247.CrossRefGoogle Scholar
Holmes, R.T., 1966, Feeding ecology of the red-backed sandpiper (Calidris alpina) in arctic Alaska: Ecology, v. 47, p. 3245.CrossRefGoogle Scholar
Horsfield, T., 1821, Systematic arrangement and description of birds from the island of Java: Transactions of the Linnean Society of London, v. 13, p. 133200.CrossRefGoogle Scholar
Hulscher, J.B., 1976, Localisation of cockles (Cardium edule) by the oystercatcher (Haematopus ostralegus) in darkness and daylight: Ardea, v. 64, p. 92310.Google Scholar
Hurlbert, S.H., and Chang, C.C.Y., 1983, Ornitholimnology: effects of grazing by the Andean flamingo (Phoenicoparrus andinus): Proceedings of the National Academy of Sciences, v. 80, p. 47664769.CrossRefGoogle ScholarPubMed
Jehl, J.R. Jr. 1986, Biology of the red-necked phalarope (Phalaropus lobatus) at the western edge of the Great Basin in fall migration: Great Basin Naturalist, v. 46, p. 185197.Google Scholar
Jewell, P.W., 2021, Historic low stand of Great Salt Lake, Utah: I. Mass balance model and origin of the deep brine layer: SN Applied Science, v. 3, 757, https://doi.org/10.1007/s42452-021-04691-5.CrossRefGoogle Scholar
Jiménez, A., Elner, R.W., Falvaro, C., Rickards, K., and Ydenberg, Y.C., 2015, Intertidal biofilm distribution underpins differential tide-following behavior of two sandpiper species (Calidris mauri and Calidris alpina) during northward migration: Estuarine, Coastal and Shelf Science, v. 155, p. 816.CrossRefGoogle Scholar
Johnson, A., and Cézilly, F., 2007, The Greater Flamingo: London, T & AD Poyser, 336 p.Google Scholar
Johnson, W.P., and Rohwer, F.C., 2000, Foraging behavior of green-winged teal and mallards on tidal mudflats in Louisiana: Wetlands, v. 20, p. 184188.CrossRefGoogle Scholar
Jones, B.J., 1906, Catalogue of the Ephydridae, with bibliography and description of new species: University of California Publications in Entomology, v. 1, p. 153198.Google Scholar
Kellogg, V.L., 1906, A new Artemia and its life conditions: Science, v. 9, p. 594596.CrossRefGoogle Scholar
Kelly, J.F., Gawlik, D.E., and Kieckbusch, D.K., 2003, An updated account of wading bird foraging behavior: The Wilson Bulletin, v. 115, p. 105107.CrossRefGoogle Scholar
Kelsey, M.G., and Hassall, M., 1989, Patch selection by dunlin on a heterogeneous mudflat: Ornis Scandinavica, v. 20, p. 250254.CrossRefGoogle Scholar
Kim, J.Y., Lockley, M.G., Seo, S.J., Kim, K.S., Kim, S.H., and Baek, K.S., 2012, A paradise of Mesozoic birds: the world’s richest and most diverse Cretaceous bird track assemblage from the Early Cretaceous Haman Formation of the Gajin tracksite, Jinju, Korea: Ichnos, v. 19, p. 2842.Google Scholar
Kim, J.Y., Kim, M.K., Oh, M.S., and Lee, C.Z., 2013, A new semi-palmate bird track Gyeongsangornipes lockleyi ichnogen. et ichnosp. nov., and Koreanaornis from the Early Cretaceous Jindong Formation of Goseong County, southern coast of Korea: Ichnos, v. 20, p. 7280.CrossRefGoogle Scholar
Krapovickas, V., Ciccioli, P.L., Mángano, M.G., Marsicano, C.A., and Limarino, C.O., 2009, Paleobiology and paleoecology of an arid-semiarid Miocene South American ichnofauna in anastomosed fluvial deposits: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 284, p. 129152.CrossRefGoogle Scholar
Krienitz, L., and Kotut, K., 2010, Fluctuating algal food populations and the occurrence of lesser flamingos (Phoeniconaias minor) in three Kenyan rift valley lakes: Journal of Phycology, v. 46, p. 10881096.CrossRefGoogle Scholar
Kushlan, J.A., 1977, Foraging behavior of the white ibis: The Wilson Bulletin, v. 19, p. 342345.Google Scholar
Kuwae, T., Beninger, P.G., Decottignies, P., Mathot, K.J., Lund, D.R., and Elner, R.W., 2008, Biofilm grazing in a higher vertebrate: the western sandpiper, Calidris mauri: Ecology, v. 89, p. 599606.CrossRefGoogle Scholar
Kuwae, T., Miyoshi, E., Sassa, S., and Watabe, Y., 2010, Foraging mode shift in varying environmental conditions by dunlin (Calidris alpina): Marine Ecology Progress Series, v. 406, p. 281289.CrossRefGoogle Scholar
Kuwae, T., Miyoshi, E., Hosokawa, S., Ichimi, K., Hosoya, J., Amano, T., Moriya, T., Kondoh, M., Ydenberg, R.C., and Elner, R.W., 2012, Variable and complex food web structures revealed by exploring missing trophic links between birds and biofilm: Ecology Letters, v. 15, p. 347356.CrossRefGoogle ScholarPubMed
Latham, J., 1790, Index Ornithologicus, sive systema ornithologiæ; complectens avium divisionem in classes, ordines, genera, species, ipsarumque varietates: adjectis synonymis, locis, descriptionibus, & c. Vol. 1: London, Prostant Venales apud Leigh et Sotheby, 466 p.Google Scholar
Lawrence, G.N., 1858, Description of a new species of bird of the genus Larus Linn.: Annals of the Lyceum of Natural History of New York, v. 6, p. 7980.CrossRefGoogle Scholar
Leisler, J.P.A., 1812, Nachträge zu Bechsteins Naturgeschichte Deutschlands: Hanau, Germany, Johann Gerhard Scharneck, 200 p.CrossRefGoogle Scholar
Lesson, R.P., 1826, Dictionnaire des Sciences Naturelles, dans lequel on traite méthodiquement des différens êtres de la nature, considérés soit en eux-mêmes, d’après l’état actuel de nos connoissances, soit relativement à l’utilité qu’en peuvent retirer la médecine, l’agriculture, le commerce et les arts. Suivi d’une biographie des plus célèbres naturalistes. Par plusieurs professeurs du Jardin du Roi, et des principales écoles de Paris: Strasbourg, Paris, F. G. Levrault; Paris, Le Normant, 186 p.Google Scholar
Lichtenstein, M.H.C., 1823, Verzeichniss der Doubletten des zoologischen Museums der Königl. Universität zu Berlin nebst Beschreibung vieler bisher unbekannter Arten von Säugethieren, Vögeln, Amphibie: Berlin, Hinrich Lichtenstein, 118 p.Google Scholar
Lim, J.-D., Zhou, Z, Martin, L.D., Baek, K.-S., and Yang, S.-Y., 2000, The oldest known tracks of web-footed birds from the Lower Cretaceous of South Korea: Naturwissenschaftern, v. 87, p. 256259.CrossRefGoogle ScholarPubMed
Linnaeus, C., 1758, Systema Naturæ per Regna Tria Naturæ, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. 10th Edition, Volume 1: Holmiae [Stockholm], Laurentii Salvii, 702 p.Google Scholar
Linnaeus, C., 1761, Fauna svecica, sistens animalia Sveciæ regni mammalia, aves, amphibia, pisces, insecta, vermes. Editio altera: Stockholm, Sumtu & Lieris Direct, 579 p.Google Scholar
Linnaeus, C., 1766–1767, Systema Naturæ per Regna Tria Naturæ, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. 12th Edition, Vol. 1: Holmiae [Stockholm], Laurentii Salvii, p. 1532 [1766], p. 533–1327 [1767].Google Scholar
Livezy, B.C., 1997, A phylogenetic analysis of basal Anseriformes, the fossil Presbyornis, and the interordinal relationship of waterfowl: Zoological Journal of the Linnean Society, v. 121, p. 361428.Google Scholar
Lockley, M.G., and Harris, J.D., 2010, Chapter 1: On the trail of early birds: a review of the fossil footprint record of avian morphological and behavioral evolution, in Ulrich, P.K., and Willett, J.H., eds., Trends in Ornithology Research: New York, Nova Science Publishers, Inc., p. 163.Google Scholar
Lockley, M.G., Matsukawa, M, Ohira, H., Li, Jianjun, Wright, J., White, D., and Chen, P., 2006, Bird tracks from Liaoning Province, China: new insights into avian evolution during the Jurassic–Cretaceous transition: Cretaceous Research, v. 27, p. 3343.CrossRefGoogle Scholar
Lockley, M.G., Chin, K., Houck, M., Matsuwaka, M., and Kukihara, R., 2009, New interpretations of Ignotornis the first reported Mesozoic avian footprints: implications for the ecology and behavior of an enigmatic Cretaceous bird: Cretaceous Research, v. 30, p. 10411061.CrossRefGoogle Scholar
Lockley, M.G., Kim, K.S., Lim, J.D., and Romillo, A., 2021, Bird tracks from the Green River Formation (Eocene) of Utah: ichnotaxonomy, diversity, community structure and convergence: Historical Biology, v. 33, p. 20852102.CrossRefGoogle Scholar
Mathot, K.J., Lund, D.R., and Elner, R.W., 2010, Sediment in stomach contents of western sandpipers and dunlin provide evidence of biofilm feeding: Waterbirds, v. 33, p. 300306.CrossRefGoogle Scholar
Mathot, K.J., Piersma, T., and Elner, R.W., 2018, Shorebirds as integrators and indictors of mudflat ecology, in Beninger, P.G., ed., Aquatic Ecology Series, Mudflat Ecology: Cham, Switzerland, Springer, p. 309338.CrossRefGoogle Scholar
Mayr, G., 2009, Paleogene Fossil Birds: Springer, Berlin, 262 p.CrossRefGoogle Scholar
McNeil, R., Drapeau, P., and Goss-Custard, J.D., 1992, The occurrence and adaptive significance of nocturnal habits in waterfowl: Biological Reviews, v. 67, p. 381419.CrossRefGoogle Scholar
Mehl, M.G., 1931, Additions to the vertebrate record of the Dakota Sandstone: American Journal of Science, v. 21, p. 441452.CrossRefGoogle Scholar
Melchor, R., de Valais, S., and Genise, J., 2002, Bird-like fossil footprints from the Late Triassic: Nature, v. 417, p. 936938.CrossRefGoogle ScholarPubMed
Melchor, R.N., Bedatou, E., de Valais, S., and Genise, J.F., 2006, Lithofacies distribution of invertebrate and vertebrate trace-fossil assemblages in an early Mesozoic ephemeral fluvio-lacustrine system from Argentina: implications for the Scoyenia ichnofacies: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 239, p. 253285.CrossRefGoogle Scholar
Melchor, R.N., Cardonatto, M.C., and Visconti, G., 2012, Palaeoenvironmental and palaeoecological significance of flamingo-like footprints in shallow-lacustrine rocks: an example from the Oligocene–Miocene Vinchina Formation, Argentina: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 315–316, p. 181–198.Google Scholar
Melchor, R., Buchwaldt, R., and Bowring, S., 2013a, A late Eocene date for Late Triassic bird tracks: Nature, v. 495, p. E1E2, https://doi.org/10.1038/nature11931.Google Scholar
Melchor, R., de Valais, S., and Genise, J., 2013b, Retraction note: bird-like fossil footprints from the Late Triassic: Nature, v. 501, p. 262.CrossRefGoogle Scholar
Melchor, R., Uchman, A. and Steel, R.J., 2020, Avian diversity and behavior in an Eocene coastal plain, Svalbard: the ichnological evidence: Ichnos, v. 27, p. 334343.CrossRefGoogle Scholar
Melnyk, S., Cowper, A., Zonneveld, J.-P., and Gingras, M.K., 2022a, Applications of photogrammetry to neoichnological studies: the significance of shorebird trackway distributions at the Bay of Fundy: Palaios, v. 37, p. 606621.CrossRefGoogle Scholar
Melnyk, S., Lazowski, C.N., and Gingras, M.K., 2022b, Sedimentological and ecological significance of a biodeformational structure associated with an unusual feeding behavior in gulls (Larus sp.): Ichnos, v. 22, p. 8492.CrossRefGoogle Scholar
Meyerriecks, A.J., 1959, Foot-stirring behavior in herons: The Wilson Bulletin, v. 71, p. 153158.Google Scholar
Meyerriecks, A.J., 1971, Further observations on use of the feet by foraging herons: The Wilson Bulletin, v. 83 p. 435438Google Scholar
Miller, M.R., 1983. Foraging dives by post-breeding northern pintails: The Wilson Bulletin, v. 95, p. 294296.Google Scholar
Moreira, F., 1995a, The winter feeding ecology of avocets Recurvirostra avosetta on intertidal areas. I. Feeding strategies: Ibis, v. 137, p. 9298.Google Scholar
Moreira, F., 1995b, The winter feeding ecology of avocets Recurvirostra avosetta on intertidal areas. II. Diet and feeding mechanisms: Ibis, v. 137, p. 99108.Google Scholar
Mouritsen, K.N., and Jensen, K.T., 1992, Choice of microhabitat in tactile foraging dunlins Calidris alpina: the importance of sediment penetrability: Marine Ecology Progress Series, v. 85, p. 18.CrossRefGoogle Scholar
Moussa, M.T., 1968, Fossil tracks from the Green River Formation (Eocene) near Soldier Summit, Utah: Journal of Paleontology, v. 42, p. 14331438.Google Scholar
Mu, T., and Wilcove, D.S., 2020, Upper tidal flats are disproportionately important for the conservation of migratory shorebirds: Proceedings of the Royal Society B, v. 287, 20200278, https://doi.org/10.1098/rspb.2020.0278.CrossRefGoogle ScholarPubMed
Müller, P.L.S., 1776, Des Ritters Carl von Linné: Vollständigen Natursystems Supplements- und Register-Band über alle sechs Theile oder Classen des Thierreichs: Nürnberg, Gabriel Nicolaus Raspe, 525 p.Google Scholar
Murphey, S.M., 1981, Habitat use by migrating and breeding shorebirds on the eastern Copper River Delta, Alaska [M.Sc. thesis]: Fairbanks, Alaska, University of Alaska, 81 p.Google Scholar
Mustoe, G.E., 2002. Eocene bird, reptile and mammal tracks from the Chuckanut Formation, northwest Washington: Palaios, v. 17, p. 403413.2.0.CO;2>CrossRefGoogle Scholar
Naumann, J.F., 1840, Naturgeschichte der Vögel Deutschlands, Vol. 10: Leipzig, G. Fleischer, 633 p.Google Scholar
Nebel, S., Jackson, D.L., and Elner, R.W., 2005. Functional association of bill morphology and foraging behaviour in calidrid sandpipers: Animal Biology, v. 55, p. 235243.CrossRefGoogle Scholar
Nol, E., MacCulloch, K., Pollock, L., and McKinnon, L., 2014, Foraging ecology and time budgets of non-breeding shorebirds in coastal Cuba: Journal of Tropical Ecology, v. 30, p. 347357.CrossRefGoogle Scholar
Ntiamoa-Baidu, Y., Piersma, T., Wiersma, P., Poot, M., Battley, P., and Gordon, C., 1998, Water depth selection, daily feeding routines and diets of waterbirds in coastal lagoons in Ghana: Ibis, v. 140, p. 89103.CrossRefGoogle Scholar
O’Brien, M., Crossley, R., and Karlsson, K., 2006, The Shorebird Guide: Boston, Houghton Mifflin Company, 477p.Google Scholar
Olney, P.J.S., 1965, The food and feeding habits of Shelduck (Tadorna tadorna): Ibis, v. 107, p. 527532.CrossRefGoogle Scholar
Olsen, A.M., 2017, Feeding ecology is the primary driver of beak shape diversification in waterfowl: Functional Ecology, v. 31, p. 19851995.CrossRefGoogle Scholar
Olson, S.L., 2014, Tracks of a stilt-like bird from the early Eocene Green River Formation of Utah: possible earliest evidence of the Recurvirostridae (Charadriiformes): Waterbirds, v. 37, p. 340345.CrossRefGoogle Scholar
Olson, S.L., and Feduccia, A., 1980, Presbyornis and the origin of the Anseriformies (Aves: Charadriomorphae): Smithsonian Contributions to Zoology, v. 323, 24 p.Google Scholar
Ord, G., 1815, North American zoology, in Guthrie, W., A new Geographical, Historical, and Commercial Grammar; and Present State of the Several Kingdoms of the World, Second American Edition: Philadelphia, Johnson and Warner, p 290361.Google Scholar
Orians, G.H., 1983, Notes on the behavior of the melodious blackbird (Dives dives): The Condor, v. 85, p. 453460.CrossRefGoogle Scholar
Pallas, P.S., 1764, Adumbratiunculæ. Avium variarum praecedenti elencho insertarum, sed quæ in Systemate Naturæ Illustr. Linnæi nondum extant, in Vroeg, A., ed., Beredeneerde Catalogus van Eene, by Uitstek Fraaye en Weergaalooze Verzameling, Zoo van Inlandsche als Uitheemsche Vogelen, Viervoetige en Gekorvene Dieren, 7 p.Google Scholar
Pallas, P.S., 1776, Reise durch verschiedene Provinzen des Russischen Reichs, Part 1: St. Petersburg, Russia, Kayserliche Academie der Wissenschaften, 504 p.Google Scholar
Pallas, P.S., 1831, Zoographia Rosso-Asiatica: sistens omnium animalium in extenso Imperio Rossico, et adjacentibus maribus observatorum recensionem, domicilia, mores et descriptiones, anatomen atque icones plurimorum: Petropoli [Petrograd, Russia], Caes. acadamiae scientiarum, v. 2, 426 p.Google Scholar
Pearson, N.J., Gingras, M.K., Armitage, I.A., and Pemberton, S.G., 2007, Significance of Atlantic sturgeon feeding excavations, Mary’s Point, Bay of Fundy, New Brunswick, Canada: Palaios, v. 22, p. 457464.Google Scholar
Petrie, S.A., and Petrie, V., 1998, Activity budget of white-faced whistling-ducks during winter and spring in northern Kwazulu–Natal, South Africa: Journal of Wildlife Management, v. 62, p. 11191126.CrossRefGoogle Scholar
Pienkowski, M.W., 1983, Surface activity of some intertidal invertebrates in relation to temperature and the foraging behaviour of their shorebird predators: Marine Ecology Progress Series, v. 11, p. 141150.CrossRefGoogle Scholar
Pierre, J.P., 1994, Effects of sexual dimorphism on feeding behaviour of the Bar-tailed Godwit (Limosa lapponica) at a Southern Hemisphere wintering site: New Zealand Natural Sciences, v. 21, p. 109112.Google Scholar
Piersma, T., de Goeji, P., and Tulp, I., 1993, An evaluation of intertidal feeding habitats from a shorebird perspective: towards relevant comparisons between temperate and tropical mudflats: Netherlands Journal of Sea Research, v. 31, p. 503512.CrossRefGoogle Scholar
Piersma, T., van Gils, J., de Goeji, P., and Van Der Meer, J., 1995, Hollings functional response model as a tool to link the food-finding mechanism of a probing shorebird with its spatial distribution: Journal of Animal Ecology, v. 64, p. 493504.CrossRefGoogle Scholar
Piersma, T., van Gils, J., and Wiersma, P., 1996, Family Scolopacidae (sandpipers, snipes and phalaropes), in del Hoyo, J., Elliott, A., and Sargatal, J., eds., Handbook of the Birds of the World: Barcelona, Lynx Edicions, p. 444533.Google Scholar
Pontoppidan, E., 1763, Den Danske Atlas eller Konge-Riget Dannemark, med dets naturlige egenskaber, elementer, indbyggere, værter, dyr og andre affødninger, dets gamle tildragelser og nærværende omstændingheder i alle provintzer, stæder, kirker, slotte og herre-gaarde. Forestillet ved en udførlig lands-beskrivelse, saa og oplyst med dertil forfærdigede land-kort over enhver provintz, samt ziret med stædernes prospecter, grund-ridser, og andre merkværdige kaabber-stykker: Copenhagen, Søy-kongelig Allernaadigst Befalning, 838 p.Google Scholar
Putra, C.A., Hikmatullah, D., Zöckler, C., Syroechkovskiy, E.E., and Hughes, B., 2019, Spoon-billed sandpiper: a new species for Indonesia: Water Study, v. 126, p. 6063.Google Scholar
Puttick, G.N., 1979, Foraging behaviour and activity budgets of curlew sandpipers: Ardea, v. 67, p. 111122.Google Scholar
Quammen, M.L., 1982, Influence of subtle substrate differences on feeding by shorebirds on intertidal mudflats: Marine Biology, v. 71, p. 339343.CrossRefGoogle Scholar
Quindlan-Hotek, J.C., Bloom, E.T., Johnston, O.K., and Barocas, V.H., 2020, An inter-species computational analysis of vibrotactile sensitivity in Pacinian and Herbst corpuscles: Royal Society Open Science, v. 7, 191439, https://doi.org/10.1098/rsos.191439.CrossRefGoogle Scholar
Quoy, J.R.C., and Gaimard, J.P., 1832–1835, Voyage de la corvette l’Astrolabe: exécuté par ordre du roi, pendant les années 1826–1827–1828–1829, sous le commandement de M. J. Dumont d’Urville. Zoologie, vol. 1, p. 1–264; [1832] vol. 2, p. 1–321; [1833] vol. 2, p. 321–686; [1834] vol. 3, p. 1–366; [1835] vol. 3, p. 367–954; [1833] vol. 4, Atlas (Mollusques)…etc., in Dumont d’Urville, J., Voyage de Découvertes de l’Astrolabe. Paris, J. Tastu.Google Scholar
Recher, H.F., 1966, Some aspects of the ecology of migrant shorebirds: Ecology, v. 47, p. 393407.CrossRefGoogle Scholar
Reeve, L.A., 1857, Monograph of the genus Soletellina, in Conchologia Iconica, or illustrations of the shells of molluscous animals, Vol. 10: London, L. Reeve & Co., unpg., pl. 14.Google Scholar
Rico-Guevara, A., Sustalta, D., Gussekloo, S, Olsoen, A., Bright, J., Corbin, C., and Dudley, R., 2019, Chapter 17, feeding in birds: thriving in terrestrial, aquatic and aerial niches, in Bels, V., and Whishaw, I.Q., eds., Feeding in Vertebrates: Evolution, Morphology, Behaviour, Biomechanics: Cham, Switzerland, Springer Nature, p. 643693.CrossRefGoogle Scholar
Riegen, A.C., and Dowding, J.E., 2003, The Wrybill Anarhynchus frontalis: a brief review of status, threats and work in progress: Wader Study Group Bulletin, v. 100, p. 2024.Google Scholar
Roberts, A.J., 2013, Avian diets in a saline ecosystem: Great Salt Lake, Utah, USA: Human–Wildlife Interactions, v. 7, p. 158168.Google Scholar
Rodríguez-Pérez, H., and Green, A.J., 2006, Waterbird impacts on widgeon grass Ruppia maritima in a Mediterranean wetland: comparing bird groups and seasonal effects: Oikos, v. 112, p. 525534.CrossRefGoogle Scholar
Rooth, J., 1965, The flamingos on Bonaire (Netherlands Antilles): habitat, diet and reproduction of Phoenicopterus ruber ruber. Uitgaven Natuurwetenscihappelijke studiekring voor Suriname en de Nederlandse Antillen, Utrecht No. 41, 151 p.Google Scholar
Rubega, M.A., 1997, Surface tension prey transport in shorebirds: how widespread is it?: Ibis, v. 139, p. 488493.CrossRefGoogle Scholar
Rubega, M.A., and Obst, B.S., 1993, Surface-tension feeding in phalaropes: discovery of a novel feeding mechanism: The Auk, v. 110, p. 169178.Google Scholar
Rylander, K., 2002, The Behavior of Texas Birds: Austin, Texas, University of Texas Press, 443 p.Google Scholar
Salvador, P., Bezzi, A., Martinucci, D., Spnza, S., and Fontolan, G., 2022, Circular bedforms due to pit foraging of greater flamingos (Phoenicopterus roseus) in a back-barrier intertidal habitat: Diversity, v. 14, 788, https://doi.org/10.3390/d14100788.CrossRefGoogle Scholar
Santos, C.D., Saraiva, S., Palmeirim, J.M., and Granadeiro, J.P., 2009, How do waders perceive buried prey with patchy distributions? The role of prey density and size of patch: Journal of Experimental Marine Biology and Ecology, v. 372, p. 4348.CrossRefGoogle Scholar
Say, T., 1830, Description of new dipterous insects of the United States: Journal of the Academy of Natural Sciences of Philadelphia, v. 6, p. 149178.Google Scholar
Schmitz, R.A., and Baldassarre, G.A., 1992, Correlates of flock size and behavior of foraging American flamingos following Hurricane Gilbert in Yucatan, Mexico: Condor, v. 94, p. 260264.Google Scholar
Sclater, P.L., 1886, List of a collection of birds from the Province of Tarapacá, northern Chili: Proceedings of the Zoological Society of London, pt. 3, no. 26 p. 395404.Google Scholar
Scott, J.J., and Smith, M.E., 2015, Chapter 12. Trace fossils of the Eocene Green River lake basins, Wyoming, Utah, and Colorado, in Smith, M.E., and Carroll, A.R., eds., Stratigraphy and Paleolimnology of the Green River Formation, Western U.S.A. Syntheses in Limnogeology 1, Springer Science and Business Media, Dordrecht, The Netherlands, p. 313350.CrossRefGoogle Scholar
Scott, J.J., Renaut, R.W., Owen, R.B., and Sarjeant, W.A.S., 2007, Biogenic activity, trace formation, and trace taphonomy in the marginal marine sediments of saline, alkaline Lake Bogoria, Kenya Rift Valley, in Bromley, R.G., Buatois, L.A., Mángano, G., Genise, J.F., and Melchor, R.N., eds., Sediment–Organism Interactions: A Multifaceted Ichnology: SEPM Special Publication, v. 88, p. 311332.CrossRefGoogle Scholar
Scott, J.J., Renaut, R.W., and Owen, R.B., 2010, Taphonomic controls on animal tracks at saline, alkaline Lake Bogoria, Kenya Rift Valley: impact of salt efflorescence and clay mineralogy: Journal of Sedimentary Research, v. 80, p. 639665.CrossRefGoogle Scholar
Senner, S.E., 1979, An evaluation of the Copper River Delta as critical habitat for migrating shorebirds: Studies in Avian Biology, v. 2, p. 131145.Google Scholar
Senner, S.E., Norton, D.W., and West, G.C., 1989, Feeding ecology of western sandpipers, Calidris mauri and dunlins, C. alpina, during spring migration at Hartney Bay, Alaska: Canadian Field Naturalist, v. 103, p. 372379.Google Scholar
Shchepetkina, A., Gingras, M.K., and Pemberton, S.G. 2015. The removable-cap suction corer: an inexpensive and durable device to extract unconsolidated, wet sediments: Journal of Sedimentary Research, v. 85, p. 14311437.CrossRefGoogle Scholar
Shchepetkina, A., Gingras, M.K., and Pemberton, S.G., 2016a. Sedimentology and ichnology of the fluvial reach to inner estuary of the Ogeechee River estuary, Georgia, USA: Sedimentary Geology, v. 342, p. 202217.Google Scholar
Shchepetkina, A., Gingras, M.K., Zonneveld, J.-P., and Pemberton, S.G., 2016b, Sedimentary fabrics of the macrotidal, mud-dominated inner estuary fluvio-tidal transition zone, Petitcodiac River estuary, New Brunswick, Canada: Sedimentary Geology, v. 333, p. 147163.Google Scholar
Sibley, D., 2019, Keys to identifying shorebirds: Birdwatching Magazine, 9 p.Google Scholar
Stephens, J.F., 1826, General Zoology, or systematic natural history, Volume 13, Part1: Aves: London, Longman and Hurst, 290 p.Google Scholar
Stidham, T.A., 2001, The origin and ecological diversification of modern birds: evidence from the extinct wading ducks, Presbyornithidae (Neornithes: Anseriformes) [Ph.D. dissertation]: Berkeley, California, University of California, 274 p.Google Scholar
Streefkerk, C.J., 1960, (Verslag van het vergelijkend onderzoek naar de wijze van voedsel zoeken van enige soorten steltlopers): Uitgegeven door de Christlelijke Jegdbond van Natuurvrienden, Amsterdam, 32 p. [in Dutch]Google Scholar
Stuart, C., and Stuart, M., 2019, Stuart’s Field Guide to the Tracks and Signs of Southern, Central and East African Wildlife, Revised Edition: Cape Town, Penguin Random House, 488 p.Google Scholar
Swennen, C., and van der Baan, G., 1959, Tracking birds on tidal flats and beaches: British Birds, v. 54, p. 1518.Google Scholar
Swennen, C., and Yu, Y.-T., 2004, Notes on feeding structures of the black-faced spoonbill Platalea minor: Ornithological Sciences, v. 3, p. 119124.CrossRefGoogle Scholar
Swennen, C., and Yu, Y.-T., 2005, Food and feeding behavior of the black-faced spoonbill: Waterbirds, v. 28, p. 1927.CrossRefGoogle Scholar
Swennen, C., and Yu, Y.-T., 2008, Bill sweeping in spoonbills Platalea: no evidence for an effective suction force at the tip: Journal of Avian Biology, v. 39, p. 36.CrossRefGoogle Scholar
Tatu, K.S., Anderson, J.T., Hindman, L.J., and Seidel, G., 2007, Diurnal foraging activities of mute swans in Chesapeake Bay, Maryland: Waterbirds, v. 30, p. 121128.Google Scholar
Temminck, C.J., and Schlegel, H., 1849, Aves, in Siebold, P.F. de, ed., Fauna Japonica sive descriptio animalium, quae in itinere per Japoniam, jussu et auspiciis superiorum, qui summum in India Batava imperium tenent, suscepto, annis 1825–1830 collegit, notis, observationibus et adumbrationibus illustravit. Volume 4: Leiden, Apud Auctorem, 141 p.Google Scholar
Thomas, G.J., 1982, Autumn and winter feeding ecology of waterfowl at the Ouse Washes, England: Journal of Zoology, v. 197, p. 131172.Google Scholar
Thompson, D.B.A., 1981, Feeding behaviour of wintering shelduck on the Clyde Estuary: Wildfowl, v. 32, p. 8898.Google Scholar
Thompson, D.B.A., 1982, The abundance and distribution of intertidal invertebrates, and an estimation of their selection by shelduck: Wildfowl, v. 33, p. 151158.Google Scholar
Tinbergen, N., 1962, Foot-paddling in gulls: British Birds, v. 57, p. 117119.Google Scholar
Touhami, F., Idrissi, H.R., and Benhoussa, A., 2020, Foraging behaviour of wintering shorebirds at Marja Zerga Lagoon (Atlantic Coast, Morocco): Ostrich: Journal of African Ornithology, v. 91, p. 244251.CrossRefGoogle Scholar
Townsend, C.H., 1897, Descriptions of a new eagle from Alaska and a new squirrel from California: Proceedings of the Biological Society of Washington, v. 9, p. 145146.Google Scholar
Turpie, J., 1994, Why do plovers have stereotyped behaviour?: Wader Study Group Bulletin, v. 75, p. 39.Google Scholar
Um, S.H., Paik, K.H., Lee, H.Y., and Bong, P.Y., 1987, Stratigraphy and depositional environment of Gyeongsang System (Cretaceous non-marine) in Korea: Report of Korea Institute of Geoscience and Mineral Resources, v. 4, p. 934.Google Scholar
van Tuinen, M., and Hedges, B., 2001, Calibration of avian molecular clocks: Molecular Biology and Evolution, v. 18, p. 206213.CrossRefGoogle ScholarPubMed
Velasquez, C.R., 1992, Managing artificial saltpans as a waterbird habitat: species responses to water level manipulation: Colonial Waterbirds, v. 15, p. 4355.CrossRefGoogle Scholar
Viain, A., Corre, F., Delaporte, P., Joyeux, E., and Bocher, P., 2011, Numbers, diet and feeding methods of Common Shelduck (Tadorna tadorna) wintering in the estuarine bays of Aiguillon and Marennes-Oléron, western France: Wildfowl, v. 61, p. 121141.Google Scholar
Vieillot, L.J.P., 1816–1819, Nouveau Dictionnaire d’Histoire Naturelle, Appliquée aux Arts, à l’Agriculture, à l’Économie Rurale et Domestique, à la Médecine, etc. Volume 6, Nouvelle edition: Paris, Chez Deterville, 570 p.Google Scholar
von Middendorff, A.T., 1853 [1852], Reise in den Äuβersten Norden und Osten Sibiriens während der Jahre 1843 und 1844 mit allerhöchster Genehmigung auf Veranstaltung der Kaiserlichen Akademie der Wissenschaften zu St. Petersburg ausgeführt: Kaiserliche Akademie der Wissenschaften, St. Petersburg, 256p.Google Scholar
Wagler, J.G., 1831, II. Aves: Isis, v. 24, p. 515533.Google Scholar
Walmsley, J.G., and Moser, M.E., 1981, The winter food and feeding habits of shelduck in the Camargue, France: Wildfowl, v. 32, p. 99106.Google Scholar
Ward, S., and Bullock, D.J. 1988, The winter feeding ecology of the black-tailed godwit – a preliminary study: Wader Study Group Bulletin, v. 53, p. 1115.Google Scholar
Weber, L.M., and Haig, S.M., 1997, Shorebird diet and size selection of nereid polychaetes in South Carolina coastal diked wetlands: Journal of Field Ornithology, v. 68, p. 358366.Google Scholar
Wetmore, A., 1926, Fossil birds from the Green River deposits of eastern Utah: Annals of the Carnegie Museum, v. 16, p. 391402.CrossRefGoogle Scholar
Willard, D.E., 1977, The feeding ecology and behavior of five species of herons in southeastern New Jersey: The Condor, v. 79, p. 462470.CrossRefGoogle Scholar
Wilson, W.H., 1991, The foraging ecology of migratory shorebirds in marine soft-sediment communities: the effects of episodic predation on prey populations: American Zoologist, v. 31, p. 840848.CrossRefGoogle Scholar
Withington, R.J., 2015, The foraging ecology of non-breeding wrybills (Anarhynchus frontalis) in the Firth of Thames [M.Sc. thesis]: Palmerston North, New Zealand, Massey University, 72 p.Google Scholar
Wollheim, W.M., and Lovvorn, J.R., 1995, Salinity effects on macroinvertebrate assemblages and waterbird food webs in shallow lakes of the Wyoming high plains: Hydrobiologia, v. 310, p. 207233.CrossRefGoogle Scholar
Woodley, K., 2012, Shorebirds of New Zealand: Sharing the Margins: Auckland, New Zealand, Penguin Books, 272 p.Google Scholar
Yang, S.-Y., Lockley, M.G., Greben, R., Ericksen, B.R., and Lim, S.K., 1995, Flamingo and duck-like bird tracks from the Late Cretaceous and early Tertiary: evidence and implications: Ichnos, v. 4, p. 2134.CrossRefGoogle Scholar
Zelenkov, N.V., 2021, A revision of the Palaeocene–Eocene Mongolian Presbyornithidae (Aves: Anseriformes): Palaeontological Journal, v. 55, p. 323330.CrossRefGoogle Scholar
Zelenkov, N.V., and Stidham, T.A., 2018, Possible filter-feeding in the extinct Presbyornis and the evolution of Anseriformes (Aves): Zoologicheskiĭ Zhurnal, v. 97, p. 943956.Google Scholar
Zelenskaya, L.A., 2021, Ecology of an urban population of the slaty-backed gull (Larus schistisagus) in comparison with natural colonies. Feeding and foraging flights: Biology Bulletin, v. 48, p. S85S102.Google Scholar
Zonneveld, J.-P., 2016, Applications of experimental neoichnology to paleobiological and evolutionary problems: Palaios, v. 31, p. 275279.CrossRefGoogle Scholar
Zonneveld, J.-P., Zaim, Y., Rizal, Y., Ciochon, R.L., Bettis, E.E. III, Aswan, A., and Gunnell, G.F., 2011, Oligocene shorebird footprints, Kandi, Ombilin Basin, Sumatra: Ichnos, v. 18, p. 221277.Google Scholar
Zonneveld, J.-P., Zaim, Y., Rizal, Y., Ciochon, R.L., Bettis, E.E. III, Aswan, A., and Gunnell, G.F., 2012, Ichnological constraints on the depositional environment of the Sawahlunto Formation, Kandi, northwest Ombilin Basin, west Sumatra, Indonesia: Journal of Asian Earth Sciences, v. 45, p. 106113.Google Scholar
Zonneveld, J.-P., Gingras, M.K., Hodgson, C.A., McHugh, L.P., Myers, R.A., Schoengut, J.A., and Wetthuhn, B., 2014, Chapter 8: Biotic segregation in an upper mesotidal dissipative ridge and runnel succession, west Salish Sea, Vancouver Island, British Columbia, in Hembree, D.I., Platt, B.F., Smith, J.J., eds., Experimental Approaches to Understanding Fossil Organisms: Topics in Geobiology: Dordrecht, The Netherlands, Springer Netherlands, v. 41, p. 169194.CrossRefGoogle Scholar
Zonneveld, J.-P., Fiorillo, A.R., Hasiotis, S.T., and Gingras, M.K., 2022, Tooth marks, gnaw marks, claw-marks, bite marks, scratch marks, etc: terminology in Ichnology: Ichnos, v. 22, p. 93101.CrossRefGoogle Scholar
Zonneveld, J.-P., Zaim, Y., Rizal, Y., Aswan, A., Ciochon, R.L., Smith, T., Head, J., Wilf, P., and Bloch, J.I., 2024, Avian foraging on an intertidal mudflat succession in the Eocene Tanjung Formation, Asem Asem Basin, South Kalimantan, Indonesian Borneo: Palaios, v. 39, p. 6796.CrossRefGoogle Scholar
Zonneveld, J.-P., Naone, S., and Britt, B., 2025, Waterbird foraging traces from the early Eocene Green River Formation, Utah: Journal of Paleontology, v. 98, p. 865884.CrossRefGoogle Scholar
Zusi, R.L., 1984, A functional and evolutionary analysis of rhynchokinesis in birds: Smithsonian Contributions to Zoology, v. 395, 40 p.Google Scholar
Zweers, G.A., and Gerritsen, A.F.C., 1997, Transitions from pecking to probing mechanisms in waders: Netherlands Journal of Zoology, v. 47, p. 161208.CrossRefGoogle Scholar