Hostname: page-component-cb9f654ff-lqqdg Total loading time: 0 Render date: 2025-08-12T00:57:50.812Z Has data issue: false hasContentIssue false

Recent advances and current state of knowledge of phylogenetics and systematics of the Diplostomoidea with a proposal of a new classification system and a key to genera

Published online by Cambridge University Press:  28 July 2025

T.J. Achatz
Affiliation:
Department of Natural Sciences, https://ror.org/01cwqb692Middle Georgia State University, Macon, Georgia 31206, USA
V.V. Tkach*
Affiliation:
Department of Biology, https://ror.org/04a5szx83University of North Dakota, Starcher Hall, 10 Cornell Street Stop 9019, Grand Forks, North Dakota 58202, USA
*
Corresponding author: V.V. Tkach; Email: vasyl.tkach@und.edu
Rights & Permissions [Opens in a new window]

Abstract

The superfamily Diplostomoidea Poirier, 1886 is a large, globally distributed group of digeneans characterized by the presence of a unique holdfast organ and parasitic in most major groups of vertebrates (birds, mammals, reptiles, fishes) as definitive hosts. A number of diplostomoideans are associated with diseases in their intermediate and, more rarely, definitive hosts. Prior to this work and upon the recent synonymization of the Brauninidae Wolf, 1903, the Diplostomoidea included 5 families: Bolbocephalodidae Strand, 1935; Cyathocotylidae Mühling, 1896; Diplostomidae Poirier, 1886; Proterodiplostomidae Dubois, 1936; and Strigeidae Railliet, 1919. The separation of these families was based primarily on the structure and shape of prosoma and holdfast organ as well as the presence/absence of cirrus sac and paraprostate. More rarely, distinguishing among families was based on life cycles and types of larval stages, excretory system or even host specificity. However, due to the inconsistent nature of most of morphological and biological characters across the Diplostomoidea and nearly universal lack of agreement on their relative value, the systematic history of the group has been extremely tumultuous, and none of many classification systems proposed over the last 140 years has become broadly accepted or supported by phylogenetic analyses. Extensive molecular phylogenetic studies of the Diplostomoidea in the last 15 years helped to partly improve the classification system and resolve multiple taxonomic questions. Notably, practically all molecular phylogenies have clearly demonstrated non-monophyly of the two largest families, the Diplostomidae and the Strigeidae and indicated it as systematic problem. We provide a brief overview of the history and current state of knowledge of diplostomoidean systematics and re-evaluate the classification system of the Diplostomoidea based on morphological and molecular evidence. We propose changes in the classification system that reconciles the traditional morphological and life cycle data with molecular phylogenies. The major element of the proposed classification system is the synonymization of the families Proterodiplostomidae and Strigeidae with the Diplostomidae as the only feasible way to resolve the problem of consistent non-monophyly of the latter two families and provide stability to the classification system.

Information

Type
Research Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Introduction

The superfamily Diplostomoidea Poirier, 1886 (Digenea Carus, 1863: Diplostomida Olson, Cribb, Tkach, Bray et Littlewood, 2003) is a large, globally distributed group of digeneans that parasitize most major groups of vertebrates (fish, reptiles, birds, mammals) as definitive hosts. Diplostomoideans are characterized by the presence of a unique holdfast organ that most often appears sucker-like or as a distinctly bilobed structure (Blasco-Costa and Locke Reference Blasco-Costa and Locke2017; Niewiadomska Reference Niewiadomska, Gibson, Jones and Bray2002a–g). Members of a few genera, such as Codonocephalus Diesing, 1850 and Nematostrigrea Sandground, 1934, have more unusual holdfast organ anatomy that may consist of weakly developed or indistinct lobes (like crimped paper) (Achatz et al. Reference Achatz, Dmytrieva, Kuzmin and Tkach2019b; Gudla et al. Reference Gudla, Orlofske, Brant, Tkach, Dubay, Holtz and Achatz2023). A number of diplostomoideans are associated with diseases in their intermediate hosts, including humans. For instance, several genera, including Cardiocephaloides Sudarikov, 1959; Crassiphiala Van Haitsma, 1925; Diplostomum von Nordmann, 1832; Posthodiplostomum Dubois, 1936; Tylodelphys Diesing, 1850; and Uvulifer Yamaguti, 1934, are known to be causative agents of a variety of parasitic diseases in fishes (Chappell et al. Reference Chappell, Hardie, Secombes, Pike and Lewis1994; Lemly and Esch Reference Lemly and Esch1984; Matisz et al. Reference Matisz, Goater and Bray2010; Overstreet and Curran Reference Overstreet and Curran2004; Tăbăran et al. Reference Tăbăran, Sándor, Marinov, Cătoi and Mihalca2013; Tkach and Achatz Reference Tkach and Achatz2025; Vermaak et al. Reference Vermaak, Smit and Olena2021). Larval Alaria spp. infections, resulting from consumption of uncooked or undercooked frogs, may cause clinical disease or even death (Freeman et al. Reference Freeman, Stuart, Cullen, Ritchie, Mildon, Fernandes and Bonin1976; Möhl et al. Reference Möhl, Grosse, Hamedy, Wüste, Kabelitz and Lücker2009; Uhrig et al. Reference Uhrig, Spagnoli, Tkach, Kent and Mason2015). Less frequently, diplostomoideans may cause disease in their definitive hosts; for example, Cyathocotyle bushiensis Khan, 1962 is associated with massive die-offs of aquatic birds in the Midwestern United States (Gibson et al. Reference Gibson, Broughton and Choquette1972; Herrmann and Sorensen Reference Herrmann and Sorensen2009; Hoeve and Scott Reference Hoeve and Scott1988), Cardiocephaloides physalis (Lutz, 1927) caused mortality in penguins (e.g., Randall and Bray Reference Randall and Bray1983), and Ichthyocotylurus erraticus (Rudolphi, 1809) caused heavy pathological effect and mortality in terns (Pieters et al. Reference Pieters, Hoyer, Verstappen, Wolters, Ijzer, de Jong, Cremers and Kik2014). At present, the Diplostomoidea includes 5 families: Bolbocephalodidae Strand, 1935; Cyathocotylidae Mühling, 1896; Diplostomidae Poirier, 1886; Proterodiplostomidae Dubois, 1936; and Strigeidae Railliet, 1919.

The separation of these families is largely based on the structure and shape of a prosoma and holdfast organ as well as the presence/absence of a cirrus sac and paraprostate. Only the Cyathocotylidae possess a cirrus sac, while members of the other four families have a variety of modified reproductive structures. Only members of the Proterodiplostomidae have a paraprostate, although at least one member of the family (Mesodiplostomum Dubois, 1936) lacks this organ. According to the Keys to the Trematoda (Niewiadomska Reference Niewiadomska, Gibson, Jones and Bray2002f), the Strigeidae differ from the Bolbocephalodidae, Diplostomidae, and Proterodiplostomidae (Niewiadomska, Reference Niewiadomska, Gibson, Jones and Bray2002a,Reference Niewiadomska, Gibson, Jones and Brayc,Reference Niewiadomska, Gibson, Jones and Braye) by the shape of the prosoma and holdfast organ. However, the nature of the prosoma and holdfast organ are rather inconsistent among many of these digeneans, including some diplostomids and strigeids as discussed below.

Over the previous approximately 140 years, there have been numerous publications dealing with the systematics of the Diplostomoidea to a smaller or greater extent. Brandes (Reference Brandes1888), Yamaguti (Reference Yamaguti1958, Reference Yamaguti1971), Shigin (Reference Shigin1986, Reference Shigin1993), Sudarikov (Reference Sudarikov and Skrjabin1960a,Reference Sudarikov and Skrjabinb, Reference Sudarikov1984), Shoop (Reference Shoop1989), and especially Dubois (Reference Dubois1936a,Reference Dubois1936b, Reference Dubois1938, Reference Dubois1944, Reference Dubois1953, Reference Dubois1968, Reference Dubois1970a,Reference Duboisb, Reference Dubois1987, Reference Dubois1989) were among the most prominent researchers who advanced our knowledge on the group and attempted to create some sort of a classification system using traditional characters such as general anatomy, life cycles and types of larval stages, excretory system, or even host specificity. Due to the nearly universal lack of agreement on the relative value of one or another morphological character, the systematic history of the group has been extremely tumultuous.

Despite the availability of DNA sequencing, few studies produced DNA sequences of diplostomoideans until the early 2010s (Bell et al. Reference Bell, Sommerville and Valtonen2001; Bell and Sommerville Reference Bell and Sommerville2002; Olson et al. Reference Olson, Cribb, Tkach, Bray and Littlewood2003; Overstreet et al. Reference Overstreet, Curran, Pote, King, Blend and Grater2002). Starting in the early 2010s, molecular studies on diplostomoideans expanded in an explosive manner; numerous publications on molecular methods and datasets of diplostomoideans have been published in a short time span which continues until now, and hopefully will not slow down any time soon (e.g., Achatz et al. Reference Achatz, Curran, Patitucci, Fecchio and Tkach2019aReference Achatz, Pulis, Junker, Binh, Snyder and Tkachd, Reference Achatz, Pulis, González-Acuña and Tkach2020, Reference Achatz, Bell, Melo, Fecchio and Tkach2021aReference Achatz, Chermak, Martens, Pulis, Fecchio, Bell, Greiman, Cromwell, Brant, Kent and Tkachc, Reference Achatz, Chermak, Junker and Tkach2022aReference Achatz, Pulis, Woodyard, Rosser, Martens, Weinstein, Fecchio, McAllister, Bonilla and Tkache, Reference Achatz, Burkman, Fecchio, Pulis and Tkach2023a,Reference Achatz, Von Holten, Kipp, Fecchio, LaFond, Martens and Tkachb, Reference Achatz, Chacko, Prasadan and Tkach2024a,Reference Achatz, Von Holten, Binh and Tkachb, Reference Achatz, Kostadinova, Georgieva, Fecchio and Tkachin press; Blasco-Costa et al. Reference Blasco-Costa, Poulin and Presswell2016; Blasco-Costa and Locke Reference Blasco-Costa and Locke2017; Brabec et al. Reference Brabec, Kostadinova, Scholz and Littewood2015; Cech et al. Reference Cech, Sándor, Molnár, Paulus, Papp, Preiszner, Vitál, Varga and Székely2020; Chibwana et al. Reference Chibwana, Nkwengulila, Locke, McLaughlin and Marcogliese2015; Faltýnková et al. Reference Faltýnková, Kudlai, Pantoja, Jouet and Skírnisson2023, Reference Faltýnková, O’Dwyer, Pantoja, Jouet, Skírnisson and Kudlai2024; González-García et al. Reference González-García, López-Jiménez, Ortega-Olivares, Sereno-Uribe, Pérez-Ponce de León and García-Varela2024; Gudla et al. Reference Gudla, Orlofske, Brant, Tkach, Dubay, Holtz and Achatz2023; Heneberg et al. Reference Heneberg, Sitko, Těšínský, Rząd and Bizos2018, Reference Heneberg, Sitko and Těšínský2020; Hernández-Mena et al. Reference Hernández-Mena, García-Prieto and García-Varela2014, Reference Hernández-Mena, García-Varela and Pérez-Ponce de León2017; Hoogendoorn et al. Reference Hoogendoorn, Smi and Kudlai2019, Reference Hoogendoorn, Smit and Kudlai2020; Huston et al. Reference Huston, Cutmore and Cribb2018; Keller et al. Reference Keller, Roderick, Caris, Grear and Cole2021; Locke et al. Reference Locke, McLaughlin, Dayanandan and Marcogliese2010a,Reference Locke, McLaughlin and Marcoglieseb, Reference Locke, McLaughlin, Lapierre, Johnson and Marcogliese2011, Reference Locke, Van Dam, Caffara, Pinto, López-Hernández and Blanar2018, Reference Locke, Drago, López-Hernández, Chibwana, Núñez, Van Dam, Fernanda Achinelly, Johnson, Costa Alves de Assis, Lane de Melo and Alves Pinto2021; López-Hernández et al. Reference López-Hernández, Locke, Melo, Rabelo and Pinto2018, Reference López-Hernández, Locke, de Assis, Drago, de Melo, Rabelo and Pinto2019; López-Jiménez et al. Reference López-Jiménez, Pérez-Ponce de León and García-Varela2018, Reference López-Jiménez, González-García and García-Varela2022, Reference López-Jiménez, González-García, Andrade-Gómez and García-Varela2023; Marcogliese and Locke Reference Marcogliese and Locke2021; Montes et al. Reference Montes, Croci, Santopolo, Barneche, Ferrari, Cardarella and Martorelli2022; Moszczynska et al. Reference Moszczynska, Locke, McLaughlin, Marcogliese and Crease2009; Nakao and Sasaki Reference Nakao and Sasaki2021; Negrelli et al. Reference Negrelli, Vieira, Abdallah and Azevedo2020; Nguyen et al. Reference Nguyen, Li, Makaoloutou, Jimenez and Sato2012; Pérez-Ponce de León et al. Reference Pérez-Ponce de León, Sereno-Uribe, Pinacho-Pinacho and García-Varela2022; Pernett et al. Reference Pernett, Brant and Locke2022; Pyrka et al. Reference Pyrka, Kanarek, Zaleśny and Hildebrand2021; Queiroz et al. Reference Queiroz, López-Hernández, Locke, Pinto and Anjos2020; Rochat et al. Reference Rochat, Blasco-Costa, Scholz and Unmack2020; Rosser et al. Reference Rosser, Alberson, Khoo, Woodyard, Pote and Griffin2016; Schwelm et al. Reference Schwelm, Kudlai, Smit, Selbach and Sures2020; Sereno-Uribe et al. Reference Sereno-Uribe, Andrade-Gómez, Ostrowski de Núñez, Pérez-Ponce de León and García-Varela2019; Shamsi et al. Reference Shamsi, Day, Zhu, McLellan, Barton, Dang and Nowak2021; Soldánová et al. Reference Soldánová, Georgieva, Roháčová, Knudsen, Kuhn, Henriksen, Siwertsson, Shaw, Kuris, Amundsen, Scholz, Lafferty and Kostadinova2017; Steenrod et al. Reference Steenrod, Jones and Marino2019; Stoyanov et al. Reference Stoyanov, Georgieva, Pankov, Kudlai, Kostadinova and Georgiev2017; Tkach et al. Reference Tkach, Achatz, Pulis, Junker, Snyder, Bell, Halajian and Melo2020; Van Steenkiste et al. Reference Van Steenkiste, Locke, Castelin, Marcogliese and Abbott2015). However, despite increased attention and the use of DNA sequencing in nearly every work on the Diplostomoidea in the last 15 years or so, the majority of studies were based on larval stages, either those in snails or in the second intermediate hosts such as fish, amphibians, and some invertebrates like snails and leeches. Certainly, this is because obtaining larval stages is easier and typically does not require any special collecting permits or Institutional Animal Care and Use Committee (IACUC) protocols. Relatively few properly identified adult diplostomoideans were sequenced prior to the works by the present authors.

Brabec et al. (Reference Brabec, Kostadinova, Scholz and Littewood2015) were the first to sequence and annotate mitochondrial genomes of two Diplostomum spp. Their study was an early indication that mitochondrial genes and even complete mitogenomes are not ideal targets for higher level phylogenies, although they can be very useful at lower taxonomic levels. For instance, in their phylogeny, Diplostomum spp. ended up being closer to members of the Plagiorchiida, which does not make a biological sense. Otherwise, molecular phylogenetic studies, often based on large ribosomal subunit (28S) rDNA sequences, demonstrated non-monophyly of most diplostomoidean families (i.e., Cyathocotylidae + Brauninidae Wolf, 1903 and Diplostomidae + Strigeidae + Proterodiplostomidae) (Achatz et al. Reference Achatz, Pulis, Junker, Binh, Snyder and Tkach2019d, Reference Achatz, Chermak, Martens, Pulis, Fecchio, Bell, Greiman, Cromwell, Brant, Kent and Tkach2021c, Reference Achatz, Pulis, Woodyard, Rosser, Martens, Weinstein, Fecchio, McAllister, Bonilla and Tkach2022e, Reference Achatz, Von Holten, Kipp, Fecchio, LaFond, Martens and Tkach2023b; Blasco-Costa and Locke Reference Blasco-Costa and Locke2017; Gudla et al. Reference Gudla, Orlofske, Brant, Tkach, Dubay, Holtz and Achatz2023; Hernández-Mena et al. Reference Hernández-Mena, García-Varela and Pérez-Ponce de León2017; Locke et al. Reference Locke, Van Dam, Caffara, Pinto, López-Hernández and Blanar2018; Tkach et al. Reference Tkach, Achatz, Pulis, Junker, Snyder, Bell, Halajian and Melo2020). In the present work, we briefly discuss the history and current state of knowledge of diplostomoidean systematics and re-evaluate the classification system of the Diplostomoidea based on morphological and molecular evidence. We propose changes in the classification system that reconcile the traditional morphological and life cycle data with molecular phylogenies, and provide stability to the classification system.

Materials and methods

Large ribosomal subunit (28S) rDNA sequences of 215 species/species-level lineages were gathered from GenBank. These sequences included 8 nominal genera and 21 species/species-level lineages of cyathocotylids, 20 nominal genera and 132 species/species-level lineages of diplostomids, 18 nominal genera and 22 species/species-level lineages of proterodiplostomids, and 9 genera and 39 species/species-level lineages of strigeids (Supplementary Table S1). Duplicate sequences from conspecific isolates were not included in the analysis if they were identical to other sequences. Based on the topology of Pérez-Ponce de León and Hernández-Mena (Reference Pérez-Ponce de León and Hernández-Mena2019), Harmotrema laticaudae Yamaguti, 1933 was selected as the outgroup. Sequences were initially aligned using ClustalW as implemented in MEGA7 software (Kumar et al. Reference Kumar, Stecher and Tamura2016). The alignment was 1,056 nucleotides long upon trimming to the length of the shortest sequence; 102 sites with ambiguous homology were excluded from the analysis.

Bayesian inference (BI) as implemented in MrBayes v3.2.6 software was used for the phylogenetic analyses (Kumar et al. Reference Kumar, Stecher and Tamura2016; Ronquist and Huelsenbeck Reference Ronquist and Huelsenbeck2003). The general time-reversible model with estimates of invariant sites and gamma-distributed among-site variation (GTR + G + I) model was identified as the best-fitting nucleotide substitution model using MEGA7 (Kumar et al. Reference Kumar, Stecher and Tamura2016). The BI analysis was performed as follows: Markov chain Monte Carlo (MCMC) chains were run for 6,000,000 generations with sampling frequency set at 1,000. Log-likelihood scores were plotted, and only the final 75% of trees were used to produce the consensus trees. The number of generations in the analysis was considered sufficient since the standard deviation stabilized below 0.01.

Results and discussion

Molecular phylogeny

The phylogeny resulting from the analysis of 28S demonstrated the monophyly of the Cyathocotylidae sensu Achatz et al. (Reference Achatz, Pulis, Junker, Binh, Snyder and Tkach2019d) and non-monophyly of the Diplostomidae and Strigeidae (Figures 1 and S1). Cyathocotylidae (100% supported) had well-resolved and strong supported topology. In contrast, the Diplostomidae, Strigeidae, and Proterodiplostomidae formed an extensive polytomy (100% supported) that consisted of 14 branches (albeit some with only a single species or lacking strong support). The Diplostomidae was split across 10 separate clades: (i) Diplostomum spp. + Tylodelphys spp. + Austrodiplostomum spp. + Pulvinifer macrostomum (Jägerskiöld, 1900) + Alaria spp. (93% supported), (ii) Posthodiplostomum spp. + an unknown diplostomid (94% supported), (iii) Uvulifer spp. + Crassiphiala spp. + Pseudocrassiphiala spp. + Posthodiplostomoides kinsellae Achatz, Chermak, Martens, Pulis et Tkach, 2021 + Subuvulifer spp. + Cercocotyla spp. (90% supported), (iv) Neodiplostomum spp. (100% supported), (v) Dolichorchis spp. + Neodiplostomum spp. + Neofibricola spp. (less than 80% supported), (vi) Bolbophorus spp. (100% supported), (vii) Sphincterodiplostomum spp. (98% supported), (viii) Bolbophorus damnificus Overstreet, Curran, Pote, King, Blend et Grater, 2002 (single sequence), (ix) an unknown genus (single sequence), and (x) Hysteromorpha triloba (Rudolphi, 1819) (single sequence). Two diplostomids (Codonocephalus urniger Diesing, 1850 and Proalarioides sp.) were positioned within a clade of strigeids (see below). The Strigeidae was split into two major clades: (i) a 100% supported clade of (Strigea spp. + Apharyngostrigea spp. + Parastrigea spp.) + (Apatemon spp. + Australapatemon spp.) and (ii) a very weakly supported clade of Nematostrigea spp. + Codonocephalus urniger + Proalarioides sp. + Cardiocephaloides spp. + (Ichthyocotylurus erraticus + Cotylurus spp.). Although the clade of (Strigea spp. + Apharyngostrigea spp. + Parastrigea spp.) was 100% supported, the support for the two sub-clades of Strigea Abildgaard, 1790 was low, and the two species of Apharyngostrigea Ciurea, 1927 appeared as independent branches (Figures 1 and S1). Overall, proximal nodes within the diplostomid and strigeids clades were not strongly supported, while the distal nodal supports (i.e., those at the genus level) were strongly supported. All current proterodiplostomids formed one strongly supported clade (100%) that was well resolved.

Figure 1. Phylogenetic interrelationships among 215 diplostomoidean taxa (see Supplementary Table S1) based on Bayesian Inference (BI) analysis of the partial 28S rDNA gene sequences. Bayesian inference posterior probability values lower than 80% are not shown. The scale-bar indicates the number of substitutions per site. * Families as recognized in the present study. Abbreviations for families as recognized prior to this work: C, Cyathocotylidae; D, Diplostomidae; P, Proterodiplostomidae; S, Strigeidae. Shaded rectangles indicate genera.

History of Diplostomoidean systematics

General remarks

The taxonomic history of the superfamily Diplostomoidea is highly complex. Numerous publications (e.g., Dubois Reference Dubois1938, Reference Dubois1953, Reference Dubois1968, Reference Dubois1970a, Reference Dubois1970b, Reference Dubois1982, Reference Dubois1987, Reference Dubois1989; Sudarikov, Reference Sudarikov and Skrjabin1959, Reference Sudarikov and Skrjabin1960a,Reference Sudarikov and Skrjabinb, Reference Sudarikov and Skrjabin1961, Reference Sudarikov1997; Yamaguti Reference Yamaguti1958, Reference Yamaguti1971) have introduced and disputed changes to taxonomy, composition, and systematics of diplostomoideans based on morphology and host-associations. We provide an abbreviated history of the superfamily, without focus on generic composition of its constituent families, followed by histories and details for each family.

Diplostomoidea

Originally, Blanchard (Reference Blanchard1847) placed what are currently known as diplostomoideans into the family Holostomidae Blanchard, 1847. Poirier (Reference Poirier1886) examined a series of digeneans from crocodilians to determine their relationship with Diplostomum spp. He used the name Diplostomidae but did not establish the superfamily Diplostomoidea in his work. Nicoll (Reference Nicoll1937) first proposed the name Diplostomatoidea Nicoll 1937, which was not broadly recognized until Sudarikov (Reference Sudarikov and Skrjabin1960a) and Gibson (Reference Gibson1996) reintroduced the taxon as Diplostomoidea Poirier, Reference Poirier1886.

Railliet (Reference Railliet1919) erected the superfamily Strigeoidea Railliet, 1919 and family Strigeidae; the family was further split into 5 subfamilies: the Strigeinae Railliet, 1919; Polyotylinae Monticelli, 1888 (which included diplostomids); Cyathocotylinae Mühling, 1898; Alariinae Hall et Wigdor, 1918; and Braunininae Wolf, 1903. Poche (Reference Poche1925) provided an alternative classification system, which included Tribus Fascioloidae Poche, 1925 that contained 4 families, including the Strigeidae. In the same work, Poche (Reference Poche1925) erected the supersuperfamily Strigeida Poche, 1925 that consisted of the Strigeidae and Cyathocotylidae.

Dubois (Reference Dubois1936b) accepted supersuperfamily Strigeida of Poche (Reference Poche1925) containing superfamilies Strigeides (amended spelling of Strigeoidea) of Railliet (Reference Railliet1919) and Cyathocotylides Dubois, 1936. The Strigeides was further split into subsuperfamilies Strigeines Dubois, 1936; Diplostomines Dubois, 1936; and Bolbocephalodines Dubois, 1936. The Strigeines and Bolbocephalodines only included 1 family each, the family Strigeidae and Bolbocephalodidae, while the Diplostomines included the Diplostomidae and Proterodiplostomidae. It is worth noting that in this classification system, only species with a cup-shaped prosoma and bilobed holdfast organ belonged to the Strigeidae; all diplostomids of reptiles were included in the Proterodiplostomidae based on host association. The Cyatocotylides included the families Cyathocotylidae and Brauninidae. Dubois (Reference Dubois1953) maintained this classification system, although the spelling of the Diplostomines was amended to Diplostomatines.

In contrast, La Rue (Reference La Rue1957) maintained the superfamily Strigeoidea of Railliet (Reference Railliet1919) with families Strigeidae, Diplostomidae, Cyathocotylidae, Proterodiplostomidae, Bolbocephalodidae, and Brauninidae. Shortly after, Sudarikov (Reference Sudarikov and Skrjabin1960a) recognized the superfamily Diplostomatoidea that contained the families Diplostomidae, Alariidae Tubangui, 1922, and Bolbocephalodidae. Further, Sudarikov (Reference Sudarikov and Skrjabin1960b) considered Proterodiplostomatoidea Sudarikov, 1960 as a separate superfamily containing two families, Proterodiplostomatidae and Ophiodiplostomatidae Sudarikov, 1960. The most recent major systematic re-evaluation of the group by Niewiadomska (Reference Niewiadomska, Gibson, Jones and Bray2002aReference Niewiadomska, Gibson, Jones and Brayg) in the Keys to the Trematoda recognized 6 families: Bolbocephalodidae, Brauninidae, Cyathocotylidae, Diplostomidae, Proterodiplostomidae, and Strigeidae. However, since its publication, Niewiadomska’s classification system underwent several changes, mostly associated with the introduction of molecular phylogenetics (see overview below). Most notably, the family Brauninidae was synonymized with the Cyathocotylidae by Achatz et al. (Reference Achatz, Pulis, Junker, Binh, Snyder and Tkach2019d).

Bolbocephalodidae

Dubois (Reference Dubois1934) erected the family Bolbocephalidae Dubois, 1934 for the lone species Bolbocephalus intestiniforax Dubois, 1934 parasitic in birds; however, since the original genus name was preoccupied, Strand (Reference Strand1935) amended the genus name to Bolbocephalodes and the family name to Bolbocephalodidae. Sudarikov (Reference Sudarikov and Skrjabin1960a) considered it to be one of the families within the Diplostomatoidea, where it has remained since. Currently, the Bolbocephalodidae is the smallest family in the superfamily consisting of a single monotypic genus, Bolbocephalodes Strand, 1935. The morphology of Bolbocephalodes intestiniforax Dubois, 1934 is highly similar to strigeids as recognized by Niewiadomska (Reference Niewiadomska, Gibson, Jones and Bray2002a) (i.e., a cup-shaped portion of prosoma and bilobed holdfast organ). Despite these similarities, it remains in its own family, with sequence data from this genus currently lacking.

Cyathocotylidae

The Cyathocotylidae has proven to be the least controversial family of diplostomoideans, in part because it contains the only diplostomoideans with a cirrus sac. Mühling (Reference Mühling1896) initially established the Cyathocotyleae for the genus Cyathocotyle Mühling, 1896. Later, Poche (Reference Poche1925) amended the name to the Cyathocotylidae. More recently, Achatz et al. (Reference Achatz, Pulis, Junker, Binh, Snyder and Tkach2019d) synonymized the Brauninidae (containing a single genus Braunina Heider, 1900 also characterized by the presence of a cirrus sac) with the Cyathocotylidae based on morphological and molecular analyses. Braunina was transferred into the subfamily Braunininae of the Cyathocotylidae. At present, the Cyathocotylidae includes 6 subfamilies: Cyathocotylinae (3 genera), Muhlinginae Mehra, 1950 (1 genus), Prohemistominae Lutz, 1935 (5 genera), Prosostephaninae Szidat, 1936 (3 genera), Szidatiinae Dubois, Reference Dubois1938 (3 genera), and Suchocyathocotylinae Achatz, Pulis, Junker, Binh, Snyder et Tkach, 2019 (1 genus).

Few molecular phylogenetic studies have focused on cyathocotylids (Achatz et al. Reference Achatz, Pulis, Junker, Binh, Snyder and Tkach2019d, Reference Achatz, Von Holten, Binh and Tkach2024b; Sokolov et al. Reference Sokolov, Vlasenkov, Bugmyrin, Kalmykov and Lebedeva2024). These studies have revealed somewhat contradictory evidence between morphology and molecular phylogenetic results. For instance, Achatz et al. (Reference Achatz, Pulis, Junker, Binh, Snyder and Tkach2019d) transferred Holostephanoides Dubois, 1983 from the Cyathocotylinae into the Szidatiinae based on strongly supported molecular evidence. At the same time, the adult morphology of Holostephanoides is highly similar to other cyathocotylines and quite different from the other 2 szidatiine genera, Gogatea Lutz, 1935 and Neogogatea Chandler et Rausch, 1947 (Achatz et al. Reference Achatz, Pulis, Junker, Binh, Snyder and Tkach2019d, Reference Achatz, Von Holten, Binh and Tkach2024b). Likewise, Paracoenogonimus Katsurada, 1914 (Prohemistominae) was shown to be nested among szidatiines, while Georgduboisia Sokolov, Vlasenkov, Bugmyrin, Kalmykov et Lebedeva, 2024 (Prosostephaninae) formed a strongly supported clade with cyathocotylines (Sokolov et al. Reference Sokolov, Vlasenkov, Bugmyrin, Kalmykov and Lebedeva2024). Molecular phylogenies revealed similar problems with the subfamily classification systems among diplostomids and proterodiplostomids (Achatz et al. Reference Achatz, Chermak, Martens, Pulis, Fecchio, Bell, Greiman, Cromwell, Brant, Kent and Tkach2021c; Tkach et al. Reference Tkach, Achatz, Pulis, Junker, Snyder, Bell, Halajian and Melo2020; see discussion below) as well as in some other digenean families (Tkach et al. Reference Tkach, Kudlai and Kostadinova2016, Reference Tkach, Achatz, Hildebrand and Greiman2018). Hence, subfamily classification systems have been recently abandoned in several digenean families—for example Cryptogonimidae Ward, 1917; Dicrocoeliidae Looss, 1899; and Echinostomatidae Looss, 1899. Some of the recent authors (Achatz et al. Reference Achatz, Chermak, Martens, Pulis, Fecchio, Bell, Greiman, Cromwell, Brant, Kent and Tkach2021c; Tkach et al. Reference Tkach, Achatz, Hildebrand and Greiman2018, Reference Tkach, Achatz, Pulis, Junker, Snyder, Bell, Halajian and Melo2020) pointed out that members of those subfamilies lack consistent differentiating morphological features. Based on these arguments and for the stability of the classification system, we do not recognize subfamilies of the Cyathocotylidae here and abandon the subfamily-based classification system of the family.

Diplostomidae

The history of the Diplostomidae was tumultuous. Poirier (Reference Poirier1886) erected the family for Diplostomum spp. Railliet (Reference Railliet1919) did not recognize the family and included diplostomids within the subfamily Polyotylinae in family Strigeidae. In Railliet’s classification system, the subfamily Alariinae established by Hall and Wigdor (Reference Hall and Wigdor1918) for diplostomids of mammals (i.e., Alaria spp.) was maintained as a separate subfamily. Tubangui (Reference Tubangui1922) elevated its status to the family Alariidae.

Dubois (Reference Dubois1936b, Reference Dubois1951) considered the Diplostomidae to be a separate family from the Strigeidae; in his classification system, the Diplostomidae included subfamilies Diplostominae (subsubfamilies Diplostomini Dubois, 1936 and Crassiphialini Dubois, 1936) and Alariinae; these subfamilies were almost entirely separated based on parasitism in avian or mammalian definitive hosts, respectively. Sudarikov (Reference Sudarikov and Skrjabin1960a,Reference Sudarikov and Skrjabinb) did not accept this arrangement and considered the family to include the subfamilies Diplostominae, Codonocephalinae Sudarikov, 1959, and Crassiphialinae Sudarikov, 1960. Later, Dubois (Reference Dubois1970a,Reference Duboisb) considered the Diplostomini and Crassiphialini, along with the Codonocephalini Sudarikov, 1959, to represent tribes of the Diplostomidae rather than subfamilies.

Shoop (Reference Shoop1989) provided a substantial revision to the classification system of the Diplostomidae by breaking it up into 3 families: Bolbophoridae Shoop, 1989; Diplostomidae (subfamilies Alariinae and Diplostominae); and Neodiplostomidae Shoop, 1989 (Crassiphialinae and Neodiplostominae Shoop, 1989). Nieiwadomska (Reference Niewiadomska, Gibson, Jones and Bray2002d) did not accept the classification system of Shoop (Reference Shoop1989) and considered Diplostomidae comprising Alariinae, Codonocephalinae, Crassiphialinae, and Diplostominae. However, molecular phylogenetic studies (e.g., Achatz et al. Reference Achatz, Pulis, Fecchio, Schlosser and Tkach2019c, Reference Achatz, Bell, Melo, Fecchio and Tkach2021a,Reference Achatz, Chermak, Martens, Pulis, Fecchio, Bell, Greiman, Cromwell, Brant, Kent and Tkachc, Reference Achatz, Martens, Kostadinova, Pulis, Orlofske, Bell, Fecchio, Oyarzún-Ruiz, Syrota and Tkach2022cReference Achatz, Pulis, Woodyard, Rosser, Martens, Weinstein, Fecchio, McAllister, Bonilla and Tkache, Reference Achatz, Von Holten, Kipp, Fecchio, LaFond, Martens and Tkach2023b, Reference Achatz, Chacko, Prasadan and Tkach2024a; Blasco-Costa and Locke Reference Blasco-Costa and Locke2017; Hernández-Mena et al. Reference Hernández-Mena, García-Varela and Pérez-Ponce de León2017; Locke et al. Reference Locke, Van Dam, Caffara, Pinto, López-Hernández and Blanar2018) revealed these subfamilies to be extensively non-monophyletic. This non-monophyly along with extensive morphological review led Achatz et al. (Reference Achatz, Chermak, Martens, Pulis, Fecchio, Bell, Greiman, Cromwell, Brant, Kent and Tkach2021c) to reject the use of subfamilies within the Diplostomidae. Importantly, several prior studies (e.g., Achatz et al. Reference Achatz, Chermak, Martens, Pulis, Fecchio, Bell, Greiman, Cromwell, Brant, Kent and Tkach2021c, Reference Achatz, Pulis, Woodyard, Rosser, Martens, Weinstein, Fecchio, McAllister, Bonilla and Tkach2022e; Blasco-Costa and Locke Reference Blasco-Costa and Locke2017 and references therein) demonstrated that molecular phylogenies did not support host-based classification systems of diplostomoideans and emphasized the extensive amount of evolutionary host switching events between various host groups in this diverse, cosmopolitan digenean lineage.

Proterodiplostomidae

Dubois (Reference Dubois1936a) erected the Proterodiplostomidae for diplostomids collected from reptiles, predominantly crocodilians. Most proterodiplostomids are characterized by the presence of a paraprostate that is associated with the male reproductive system. However, members of Mesodiplostomum and Proalarioides Yamaguti, 1933 lack this organ. The monophyly of this lineage, including Mesodiplostomum, has been demonstrated for most proterodiplostomids, with the exception of Proalarioides (Achatz et al. Reference Achatz, Chermak, Junker and Tkach2022a, Reference Achatz, Chacko, Prasadan and Tkach2024a; Tkach et al. Reference Tkach, Achatz, Pulis, Junker, Snyder, Bell, Halajian and Melo2020; Figures 1 and S1). Achatz et al. (Reference Achatz, Chacko, Prasadan and Tkach2024a) transferred Proalarioides to the Diplostomidae. A brief systematic history of this family was published by Tkach et al. (Reference Tkach, Achatz, Pulis, Junker, Snyder, Bell, Halajian and Melo2020); therefore, we are not presenting it in detail here. Among other systematic changes, Tkach et al. (Reference Tkach, Achatz, Pulis, Junker, Snyder, Bell, Halajian and Melo2020) demonstrated the non-monophyly of the proterodiplostomid subfamilies and proposed to abandon their use. These findings were further supported by subsequent works on proterodiplostomids (Achatz et al. Reference Achatz, Brito, Fecchio and Tkach2021b, Reference Achatz, Chermak, Junker and Tkach2022a, Reference Achatz, Chacko, Prasadan and Tkach2024a).

Recently, Achatz et al. (Reference Achatz, Martens, Kudlai, Junker, Boe and Tkach2022d) described the diplostomid Neofibricola Achatz, Martens, Kudlai, Junker, Boe et Tkach, 2022 from Nile crocodile Crocodylus niloticus Laurenti. Despite the host overlap, these new digeneans were demonstrated to be well separated from proterodiplostomids and lacked a paraprostate. This finding further demonstrates that host-based classification systems are not suitable for diplostomoidean systematics.

Strigeidae

The Strigeidae as originally recognized by Railliet (Reference Railliet1919) was a mixture of contemporary strigeids, diplostomids, and cyathocotylids. Dubois (Reference Dubois1936b) proposed the Strigeidae as it is currently accepted and split the family into the subfamilies Strigeinae with subsubfamilies Strigeini Dubois, 1936 and Cotylurini Dubois, 1936. Baer (Reference Baer1938) erected the subfamily Duboisiellinae Baer, 1938 for Duboisiella proloba Baer, 1938 collected from mammals, while all members of the Strigeinae only parasitize avian definitive hosts. Dubois (Reference Dubois1953) accepted Duboisiellinae as a subfamily of the Strigeidae. Bisseru (Reference Bisseru1956) described a few species of Neostrigea Bisseru, 1956 and Prostrigea Bisseru, 1956 from crocodilians and placed them into a new family Neostrigeidae Bisseru, 1956 based primarily on parasitism in a specific group of hosts. Dubois (Reference Dubois1968) considered the infection in crocodilians to be accidental and synonymized the family with the Strigeidae.

Sudarikov (Reference Sudarikov and Skrjabin1959) considered the Strigeini and Cotylurini to be subfamilies and separated Pseudapatemon Dubois, 1936 into a new subfamiliy, Pseudapatemoninae Sudarikov, 1959, based on its massive ‘cork plug-like’ holdfast organ. Dubois (Reference Dubois1968) considered the Strigeini and Cotylurini to be tribes within the subfamily Strigeinae and rejected the Pseudapatemoninae. In turn, Sudarikov (Reference Sudarikov1984) disagreed with Dubois (Reference Dubois1968) and maintained the Pseudapatemoninae. Dubois (Reference Dubois1968) separated his tribes based on the presence of vitellarium in prosoma and opisthosoma (Strigeini) or vitellarium entirely or tending to be confined to opisthosoma (Cotylurini). In Keys to the Trematoda, Niewiadomska (Reference Niewiadomska, Gibson, Jones and Bray2002f) did not include the tribes into her key, but the first step of the key aligns with the separation of the former tribes.

More recently, molecular phylogenetic studies have demonstrated the Strigeidae to be clearly non-monophyletic (Achatz et al. Reference Achatz, Pulis, Junker, Binh, Snyder and Tkach2019d, Reference Achatz, Chermak, Martens, Pulis, Fecchio, Bell, Greiman, Cromwell, Brant, Kent and Tkach2021c, Reference Achatz, Pulis, Woodyard, Rosser, Martens, Weinstein, Fecchio, McAllister, Bonilla and Tkach2022e, Reference Achatz, Von Holten, Kipp, Fecchio, LaFond, Martens and Tkach2023b; Blasco-Costa and Locke Reference Blasco-Costa and Locke2017; Gudla et al. Reference Gudla, Orlofske, Brant, Tkach, Dubay, Holtz and Achatz2023; Hernández-Mena et al. Reference Hernández-Mena, García-Varela and Pérez-Ponce de León2017; Locke et al. Reference Locke, Van Dam, Caffara, Pinto, López-Hernández and Blanar2018; Tkach et al. Reference Tkach, Achatz, Pulis, Junker, Snyder, Bell, Halajian and Melo2020). However, as subsequent studies have added a greater diversity of strigeid taxa, the family has broken up into multiple non-monophyletic clades/branches (Achatz et al. Reference Achatz, Von Holten, Kipp, Fecchio, LaFond, Martens and Tkach2023b; Achatz et al. Reference Achatz, Chacko, Prasadan and Tkach2024a; Gudla et al. Reference Gudla, Orlofske, Brant, Tkach, Dubay, Holtz and Achatz2023; Figures 1 and S1). In some analyses, the diplostomid Codonocephalus urniger and Proalarioides sp. have clustered with strigeids (Figures 1 and S1). Furthermore, there are additional questions that may require attention at the genus level, as demonstrated by the apparent non-monophyly of Apharyngostrigea and weakly supported monophyly of Strigea in our analysis.

Proposal of a new classification system

The molecular phylogenies including the phylogeny obtained in the present work (Figures 1 and S1) consistently showed a clear separation between the Cyathocotylidae and Diplostomidae + Proterodiplostomidae + Strigeidae. This has been demonstrated in several recent molecular phylogenetic studies (Achatz et al. Reference Achatz, Pulis, Junker, Binh, Snyder and Tkach2019d, Reference Achatz, Chermak, Martens, Pulis, Fecchio, Bell, Greiman, Cromwell, Brant, Kent and Tkach2021c, Reference Achatz, Pulis, Woodyard, Rosser, Martens, Weinstein, Fecchio, McAllister, Bonilla and Tkach2022e, Reference Achatz, Von Holten, Kipp, Fecchio, LaFond, Martens and Tkach2023b; Blasco-Costa and Locke Reference Blasco-Costa and Locke2017; Gudla et al. Reference Gudla, Orlofske, Brant, Tkach, Dubay, Holtz and Achatz2023; Hernández-Mena et al. Reference Hernández-Mena, García-Varela and Pérez-Ponce de León2017; Locke et al. Reference Locke, Van Dam, Caffara, Pinto, López-Hernández and Blanar2018; Tkach et al. Reference Tkach, Achatz, Pulis, Junker, Snyder, Bell, Halajian and Melo2020), and it is not surprising as cyathocotylids possess a cirrus sac that is absent in members of the other 3 groups. There is no doubt that the Cyathocotylidae represents a distinct family. However, the highly non-monophyletic Diplostomidae and Strigeidae have not been supported in any of the larger studies. It is also clear that none of the historical classification systems of the Diplostomoidea is supported by either molecular data or morphology.

Strigeids, as commonly recognized, have a tubular, cup-shaped or bulbiform prosoma and a bilobed holdfast organ; diplostomids have a flattened, foliate, caliciform or bulbous prosoma with a sucker-like holdfast organ. However, for example, Pseudapatemon aldousi McIntosh, 1940 (a strigeid) has a concave, but not cup-shaped, prosoma. On the other hand, several diplostomids (e.g., Codonocephalus urniger, Pseudocrassiphiala tulipifera Achatz, Von Holten, Fecchio et Tkach, 2023, Uvulifer elongatus Dubois, 1988) have a cup-shaped prosoma, and numerous species have ventral concavities expressed to varying extents (e.g., Alaria Schrank, 1788, Crassiphiala, Diplostomum, Neodiplostomum Railliet, 1919, Posthodiplostomum Dubois, 1936) (see illustrations and photographs of Dubois (Reference Dubois1968, Reference Dubois1970b, Reference Dubois1985, Reference Dubois1988), Niewiadomska (Reference Niewiadomska, Gibson, Jones and Bray2002d) and Achatz et al. (Reference Achatz, Curran, Patitucci, Fecchio and Tkach2019a,Reference Achatz, Dmytrieva, Kuzmin and Tkachb, Reference Achatz, Pulis, Woodyard, Rosser, Martens, Weinstein, Fecchio, McAllister, Bonilla and Tkach2022e, Reference Achatz, Burkman, Fecchio, Pulis and Tkach2023a,Reference Achatz, Von Holten, Kipp, Fecchio, LaFond, Martens and Tkachb)).

The holdfast organ of strigeids is bilobed with ventral and dorsal lobes, while diplostomids and proterodiplostomids possess a sucker-like holdfast organ (Nieiwadomska Reference Niewiadomska, Gibson, Jones and Bray2002dReference Niewiadomska, Gibson, Jones and Brayf; Figure 2). However, the holdfast organ of Co. urniger (a diplostomid) is weakly developed and appears almost bilobed. The holdfast organ of Pseudapatemon spp. (strigeids) is described as ‘massive’ (Dubois Reference Dubois1970b; Niewiadomska Reference Niewiadomska, Gibson, Jones and Bray2002d) or ‘plug like’ (Dubois Reference Dubois1970b). Diplostomids of the genera Allodiplostomum Yamaguti, 1935, Parallelorchis Harkema et Miller, 1961 and Pseudoscolopacitrema Palmieri, Krishnasamy et Sullivan, 1979 have holdfast organs that are trilobed or with 2 ventrolateral projections (Harkema and Miller Reference Harkema and Miller1961; Palmieri et al. Reference Palmieri, Krishnasamy and Sullivan1979).

Figure 2. Some of the major morphological features of diplostomids. (a) Alaria marcianae, anterior part of prosoma with horn-like pseudosuckers, ventral view (after Young et al. Reference Young, Orlofske, Jadin, Tkach, Greiman, Locke, Fernandes, Brant, Bates, Michalski and Achatzin press); (b) Alaria trashpandae, anterior part of prosoma with invaginated pseudosuckers, ventral view (after Young et al. Reference Young, Orlofske, Jadin, Tkach, Greiman, Locke, Fernandes, Brant, Bates, Michalski and Achatzin press); (c) Schwartzitrema sp., anterior part of prosoma with pseudosuckers with auricular expansions, ventral view; (d) Neodiplostomum nephrocystis, anterior part of prosoma with apical organ, ventral view (after Achatz et al. in press); (e) Herpetodiplostomum vogti, sucker-like holdfast organ, ventral view (after Achatz et al. Reference Achatz, Brito, Fecchio and Tkach2021b); (f) Cotylurus cornutus, bilobed holdfast organ, lateral view (after Dubois Reference Dubois1968); (g) Nematostrigea annulata, bilobed holdfast organ with thin, crimped lobes, ventral view (after Gudla et al. Reference Gudla, Orlofske, Brant, Tkach, Dubay, Holtz and Achatz2023); (h) Allodiplostomum scolopacis, holdfast organ with 3 massive lobes (from Dubois Reference Dubois1970b); (i, j) Posthodiplostomum dawnsherryae, posterior part of opisthosoma with genital cone and preputial fold in genital atrium (i) and everted (j), ventral view (after Achatz et al. Reference Achatz, Von Holten, Pritchard and Keel2025); (k, l) Pseudocrassiphiala tulipifera, posterior part of opisthosoma with genital cone and preputial fold in genital atrium, ventral (k) and lateral (l) views (after Achatz et al. Reference Achatz, Von Holten, Kipp, Fecchio, LaFond, Martens and Tkach2023b); (m) Bolbophorus indianus, posterior part of opisthosoma with genital cone and bulb, lateral view (after Dubois Reference Dubois1970b); (n) Neofibricola smiti, genital atrium with atrial sphincter (after Achatz et al. Reference Achatz, Martens, Kudlai, Junker, Boe and Tkach2022d); (o) Australapatemon intermedius, posterior part of opisthosoma with well-developed genital cone with internal rugae, lateral view (after Dubois Reference Dubois1968); (p) A. marcianae, seminal vesicle and ejaculatory duct with muscular pouch-like part, ventral view (after Young et al. Reference Young, Orlofske, Jadin, Tkach, Greiman, Locke, Fernandes, Brant, Bates, Michalski and Achatzin press); (q) Crassiphiala jeffreybelli, seminal vesicle with dilated part, ventral view (after Achatz et al. Reference Achatz, Von Holten, Kipp, Fecchio, LaFond, Martens and Tkach2023b); (r) Dungalabatrema kostadinovae, posterior part of opisthosoma with pouch surrounding paraprostate, lateral view (after Achatz et al. Reference Achatz, Chermak, Junker and Tkach2022a); (s) Pseudocrocodilicola americaniense, posterior part of opisthosoma with muscular pouch surrounding hermaphroditic duct, ventral view (after Tkach et al. Reference Tkach, Achatz, Pulis, Junker, Snyder, Bell, Halajian and Melo2020); (t) Sphincterodiplostomum joaopinhoi, posterior part of opisthosoma with muscular sphincter and genital pore, dorsal view (after Achatz et al. Reference Achatz, Bell, Melo, Fecchio and Tkach2021a); (u) Polycotyle ornata, posterior part of opisthosoma with sucker-like structures on body wall, lateral view (after Tkach et al. Reference Tkach, Achatz, Pulis, Junker, Snyder, Bell, Halajian and Melo2020); (v) Proterodiplostomum longum, posterior part of opisthosoma with well-developed sucker-like structure in genital atrium, lateral view (after Tkach et al. Reference Tkach, Achatz, Pulis, Junker, Snyder, Bell, Halajian and Melo2020); (w) Afroproterodiplostomum ingwenyae, posterior part of opisthosoma with massive genital cone with sucker-like structure, lateral view (after Achatz et al. Reference Achatz, Chermak, Junker and Tkach2022a). Abbreviations for structures: AO, apical organ; AS, atrial sphincter; D, dilated part of seminal vesicle; E, egg; EP, pouch like part of ejaculatory duct; GA, genital atrium; GB, genital bulb; GC, genital cone; GP, genital pore; HD, hermaphroditic duct; H, holdfast organ; P, paraprostate; Po, pouch; PF, preputial fold; PG, proteolytic gland; Ps, pseudosucker; R, genital cone with rugae; SV, seminal vesicle; S, sphincter; SS, sucker-like structure; PT, posterior testis; U, uterus; VS, ventral sucker.

Bolbocephalodes intestiniforax (Bolbocephalodidae) adds further complexity. The prosoma of this species is bulbous with cup-shaped thickening at its base, which is not all too different as seen in the numerous diplostomids with a concave, but not cup-shaped, prosoma. The holdfast organ of Bolbocephalodes intestiniforax consists of ‘two transverse lips’ (Niewiadomska Reference Niewiadomska, Gibson, Jones and Bray2002a), which clearly appears to be a normal bilobed holdfast similar to that in most strigeids. Thus, Bolbocephalodes intestiniforax anatomy is consistent with both strigeids and diplostomids. The paraprostate organ of proterodiplostomids is not even consistently present in all members of the group; of known species, Mesodiplostomum gladiolum lacks this structure, while molecular phylogeny unequivocally supports its position among other proterodiplostomids (Figure 1; Achatz et al. Reference Achatz, Chermak, Junker and Tkach2022a; Tkach et al. Reference Tkach, Achatz, Pulis, Junker, Snyder, Bell, Halajian and Melo2020).

Host association-based differentiation was historically used by some authors to separate diplostomoidean families and genera (see Dubois (Reference Dubois1936a,Reference Duboisb, Reference Dubois1968, Reference Dubois1970a,Reference Duboisb) and Niewiadomska (Reference Niewiadomska, Gibson, Jones and Bray2002cReference Niewiadomska, Gibson, Jones and Brayg)). However, molecular phylogenetic studies have consistently rejected these classification systems. For instance, Achatz et al. (Reference Achatz, Pulis, Woodyard, Rosser, Martens, Weinstein, Fecchio, McAllister, Bonilla and Tkach2022e) demonstrated that Neodiplostomum (historically viewed as parasites of birds with a single exception of a species parasitic in bat host) and Fibricola Dubois, 1932 (historically viewed as parasites of mammals) represented a single genus, Neodiplostomum. In the case of reptiles, Dubois (Reference Dubois1936a) placed all diplostomids described from reptiles (primarily crocodilians) into the Proterodiplostomidae. Achatz et al. (Reference Achatz, Martens, Kudlai, Junker, Boe and Tkach2022d) erected the genus Neofibricola, a diplostomid, from crocodile. Their molecular phylogenetic analysis, along with the present study, clearly placed that genus in the phylogeny separately from proterodiplostomids. The former Didelphodiplostomum Dubois, 1944, a parasite of mammals, was revealed to be synonymous with Tylodelphys (Achatz et al. Reference Achatz, Chermak, Martens, Woodyard, Rosser, Pulis, Weinstein, McAllister, Kinsella and Tkach2022b). Obviously, host associations do not withstand criticism as the basis for the classification system of diplostomoideans.

As seen in several recent studies, our molecular phylogeny clearly demonstrates the extensive non-monophyly of the Diplostomidae and Strigeidae (Figure 1; see discussion above). The Proterodiplostomidae was nested as a part of the polytomy consisting of many clades of diplostomids and strigeids. Unfortunately, no DNA sequences of Bolbocephalodes intestiniforax (the only member of the Bolbocephalodidae) are currently available. The fact that the major features used to discern between these families are not consistent among their members, coupled with the extensive non-monophyly of families, clearly suggests that the current classification system is not supported and renders it unstable as exemplified by the taxonomic history of family-group diplostomoidean level taxa above. This leaves two possibilities: (i) each independent lineage/branch has to be considered a separate family that will require the erection of more than 10 new families, or (ii) the Proterodiplostomidae and Strigeidae should be synonymized with the Diplostomidae. This will resolve the non-monophyly, finally provide stability for the classification system of the Diplostomoidea at the family level, and allow focus on the enhancement of the classification system of the group at the level of genera. Even if we decide to establish multiple new families, a number of monophyletic groups do not possess morphological or biological characteristics that may clearly separate them from all other monophyletic groups. Therefore, we strongly favor the latter solution and synonymize the Strigeidae, Proterodiplostomidae, and Bolbocephalodidae (based on morphology) with the Diplostomidae. Upon synonymization, the Diplostomidae includes 77 genera. This action leaves only the families Cyathocotylidae and Diplostomidae within the Diplostomoidea. We provide amended diagnoses of the Diplostomidae and Cyathocotylidae below.

Family Diplostomidae Poirier, 1886

Diagnosis: Body composed of prosoma and opisthosoma, separation of body parts may be indistinct. Prosoma flattened, concave or cup-shaped, bulbous, caliciform, foliate, or spatulate; opisthosoma claviform, coniform, cylindrical, or subovate, rarely with thick-walled capsule or series of suckers. Prosoma with or without pseudosuckers. Oral sucker typically present. Ventral sucker present or absent. Holdfast organ variable in size and shape, sucker-like or bilobed, rarely trilobed, with or without papillae, compact gland at base present or absent. Compact proteolytic gland often present, near prosoma-opisthosoma junction. Pharynx typically present. Esophagus short, ceca usually reaching close to posterior end of body. Testes two, variable in shape and arrangement, typically in opisthosoma. Ovary pretesticular or opposite to anterior testis. Seminal vesicle post-testicular; paraprostate present or absent. Cirrus-sac and cirrus absent. Genital cone or bulb often present, variable in level of development. Genital atrium often well developed, muscular, rarely with sucker or sucker-like structures. Genital pore terminal or dorso-subterminal. Vitellarium follicular, variable in extent. Uterus typically in opisthosoma, sometimes extends into prosoma. Parasites of reptiles, birds, and mammals. Afrotropics, Australasia, Indomalaya, Nearctic, Neotropics, and Palearctic. Type-genus Diplostomum von Nordmann, 1832.

Cyathocotylidae Mühling, 1896

Diagnosis: Body composed of unipartite or prosoma and opisthosoma, oval, cordiform, linguiform, or pyriform. Oral and ventral suckers typically present; pseudosuckers absent. Holdfast organ round or oval, may be massive. Pharynx typically present. Esophagus short; ceca usually reaching close to posterior end of body. Position and shape of ovary and testes variable. Cirrus-sac present, occasionally rudimentary, enclosing seminal vesicle and pars prostatica. Cirrus typically present. Genital pore terminal or dorso-subterminal. Vitellarium follicular, variable in extent. Uterus variable in extent. Parasites of fishes, reptiles, birds, and mammals. Afrotropics, Australasia, Indomalaya, Nearctic, Neotropics, and Palearctic. Type-genus Cyathocotyle Mühling, 1896.

Key to diplostomoidean genera

We provide a new key to genera of the Diplostomoidea to follow the new classification system. The removal of the inconsistent features separating the former family-group taxa, including host associations, allows this key to be more suitable for separation among genera. The key provided is based, in part, on the keys of Niewiadomska (Reference Niewiadomska, Gibson, Jones and Bray2002aReference Niewiadomska, Gibson, Jones and Brayg), Tkach et al. (Reference Tkach, Achatz, Pulis, Junker, Snyder, Bell, Halajian and Melo2020), and Achatz et al. (Reference Achatz, Chermak, Junker and Tkach2022a,Reference Achatz, Martens, Kudlai, Junker, Boe and Tkachd). The terminology for the structures aligns with the definitions provided in Achatz et al. (Reference Achatz, Martens, Kudlai, Junker, Boe and Tkach2022d). Some of the structures found at the anterior and posterior ends of diplostomids as well as various modifications of the terminal genitalia organization are illustrated in Figure 2.

Supplementary material

The supplementary material for this article can be found at http://doi.org/10.1017/S0022149X25100473.

Financial support

This work was supported by the National Science Foundation [grant DEB-1120734] to VVT as well as the University System of Georgia Stem Initiative IV (Middle Georgia State University) and Center for Middle Georgia Studies for TJA.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Achatz, TJ, Bell, JA, Melo, FTV, Fecchio, A and Tkach, VV (2021a) Phylogenetic position of Sphincterodiplostomum Dubois, 1936 (Digenea: Diplostomoidea) with description of a second species from Pantanal, Brazil. Journal of Helminthology 95, 18.Google Scholar
Achatz, TJ, Brito, ES, Fecchio, A and Tkach, VV (2021b) Description and phylogenetic position of a new species of Herpetodiplostomum from Phyrnops geoffroanus in Brazil and a re-evaluation Cheloniodiplostomum. Journal of Parasitology 107, 455462.10.1645/21-18CrossRefGoogle Scholar
Achatz, TJ, Burkman, CA, Fecchio, A, Pulis, EE and Tkach, VV (2023a) Description of Anhingatrema n. gen. (Digenea: Diplostomidae) with two new species from New World anhingas (Aves: Anhingidae). Acta Parasitologica 68, 159171.CrossRefGoogle Scholar
Achatz, TJ, Chacko, S, Prasadan, PK and Tkach, VV (2024a) Proterodiplostomid no longer: Molecular phylogeny reveals the true position of Proalarioides (Digenea: Diplostomoidea). Parasitology International 102, 102917. https://doi.org/10.1016/j.parint.2024.102917.CrossRefGoogle Scholar
Achatz, TJ, Chermak, TP, Junker, K and Tkach, VV (2022a) Integration of morphological and molecular data reveals further unknown diversity of the Proterodiplostomidae in crocodilians. Systematics and Biodiversity 20, 118. https://doi.org/10.1080/14772000.2022.2051212.CrossRefGoogle Scholar
Achatz, TJ, Chermak, TP, Martens, JR, Pulis, EE, Fecchio, A, Bell, JA, Greiman, SE, Cromwell, KA, Brant, SV, Kent, ML and Tkach, VV (2021c) Unravelling the diversity of the Crassiphialine (Digenea: Diplostomidae) with molecular phylogeny and descriptions of five new species. Current Research in Parasitology and Vector-Borne Diseases 1, 100051. https://doi.org/10.1016/j.crpvbd.2021.100051.CrossRefGoogle Scholar
Achatz, TJ, Chermak, TP, Martens, JR, Woodyard, ET, Rosser, TG, Pulis, EE, Weinstein, SB, McAllister, CT, Kinsella, JM and Tkach, VV (2022b) Molecular phylogeny supports invalidation of Didelphodiplostomum and Pharyngostomoides (Digenea: Diplostomoidea) and reveals a Tylodelphys from mammals. Zoological Journal of the Linnaean Society 196, 124136.CrossRefGoogle Scholar
Achatz, TJ, Curran, SS, Patitucci, KF, Fecchio, A, and Tkach, VV (2019a) Phylogenetic affinities of Uvulifer spp. (Digenea: Diplostomidae) in the Americas with description of two new species from Peruvian Amazon. Journal of Parasitology 105, 704717.10.1645/19-61CrossRefGoogle Scholar
Achatz, TJ, Dmytrieva, I, Kuzmin, Y and Tkach, VV (2019b) Phylogenetic position of Codonocephalus (Digenea, Diplostomoidea), an unusual diplostomid with progenetic metacercariae. Journal of Parasitology 105, 821826.10.1645/19-108CrossRefGoogle Scholar
Achatz, TJ, Kostadinova, A, Georgieva, S, Fecchio, A and Tkach, VV (in press) Host switching at water edge: Phylogeny and systematics of diplostomids (Digenea: Diplostomidae) from passeriform and cuculiform birds in South America, with invalidation of Lophosicyadiplostomum Dubois, 1936. Biodiversity and Systematics.Google Scholar
Achatz, TJ, Martens, JR, Kostadinova, A, Pulis, EE, Orlofske, SA, Bell, JA, Fecchio, A, Oyarzún-Ruiz, P, Syrota, YY and Tkach, VV (2022c) Molecular phylogeny of Diplostomum, Tylodelphys, Austrodiplostomum and Paralaria (Digenea: Diplostomidae) necessitates systematic changes and reveals history of evolutionary host switching events. International Journal for Parasitology 52, 4763. https://doi.org/10.1016/j.ijpara.2021.06.002.CrossRefGoogle Scholar
Achatz, TJ, Martens, JR, Kudlai, O, Junker, K, Boe, NW and Tkach, VV (2022d) A new genus of diplostomids (Digenea: Diplostomoidea) from Nile crocodiles (Crocodylus niloticus) in South Africa with an updated key to diplostomid genera. Journal of Parasitology 108, 453466.CrossRefGoogle Scholar
Achatz, TJ, Pulis, EE, Fecchio, A, Schlosser, IJ and Tkach, VV (2019c) Phylogenetic relationships, expanded diversity and distribution of Crassiphiala (Digenea, Diplostomidae), agents of black spot disease in fish. Parasitology Research 118, 27812787.10.1007/s00436-019-06439-yCrossRefGoogle Scholar
Achatz, TJ, Pulis, EE, González-Acuña, D and Tkach, VV (2020) Phylogenetic relationships of Cardiocephaloides spp. (Digenea, Diplostomoidea) and the genetic characterization of Cardiocephaloides physalis from Magellanic Penguin, Spheniscus magellanicus, in Chile. Acta Parasitologica 65, 525534.10.2478/s11686-019-00162-5CrossRefGoogle ScholarPubMed
Achatz, TJ, Pulis, EE, Junker, K, Binh, TT, Snyder, SD and Tkach, VV (2019d) Molecular phylogeny of the Cyathocotylidae (Digenea, Diplostomoidea) necessitates systematic changes and reveals a history of host and environment switches. Zoologica Scripta 48, 545556.10.1111/zsc.12360CrossRefGoogle Scholar
Achatz, TJ, Pulis, EE, Woodyard, ET, Rosser, TG, Martens, JR, Weinstein, SB, Fecchio, A, McAllister, CT, Bonilla, CC and Tkach, VV (2022e) Molecular phylogenetic analysis of Neodiplostomum and Fibricola (Digenea, Diplostomidae) does not support host-based systematics. Parasitology 149, 542554.CrossRefGoogle Scholar
Achatz, TJ, Von Holten, ZS, Binh, TT and Tkach, VV (2024b) Phylogeny and systematics of cyathocotylid digeneans (Digenea: Diplostomoidea) parasitizing snakes with description of three new species of Gogatea from Australia and Vietnam. Journal of Parasitology 110, 590606.10.1645/24-33CrossRefGoogle Scholar
Achatz, TJ, Von Holten, ZS, Kipp, JW, Fecchio, A, LaFond, L, Martens, JR and Tkach, VV (2023b) Phylogenetic relationships and further unknown diversity of diplostomids (Diplostomida: Diplostomidae) parasitic in kingfishers. Journal of Helminthology 97, e8. https://doi.org/10.1017/S0022149X22000852.CrossRefGoogle Scholar
Achatz, TJ, Von Holten, ZS, Pritchard, J and Keel, M (2025) Characterization of new ‘white grub’ parasites (Posthodiplostomum spp.) (Trematoda: Diplostomidae) in Georgia, USA, with descriptions of two new species and remarks on P. nanum Dubois, 1937. Systematic Parasitology 102, 33. https://doi.org/10.1007/s11230-025-10233-z.Google ScholarPubMed
Baer, JG (1938) Duboisiella proloba n. gen. n. sp., un Trématode de la Sarigue, Didelphys aurita L. In Livro jubilar do professor Lauro Travassos, 7580.Google Scholar
Bell, AS and Sommerville, C (2002) Molecular evidence for the synonymy of two species of Apatemon Szidat, 1928, A. gracilis (Rudolphi, 1819) and A. annuligerum (von Nordmann, 1832) (Digenea: Strigeidae) parasitic as metacercariae in British fishes. Journal of Helminthology 76, 193198.10.1079/JOH2002120CrossRefGoogle Scholar
Bell, AS, Sommerville, C and Valtonen, ET (2001) A molecular phylogeny of the genus Ichthyocotylurus (Digenea, Strigeidae). International Journal for Parasitology 31, 833842.10.1016/S0020-7519(01)00181-3CrossRefGoogle ScholarPubMed
Bisseru, B (1956) On three new species of strigeids trematodes from an African crocodile and the erection of a new family, Neostrigeidae. Journal of Helminthology 30, 217232.10.1017/S0022149X00033198CrossRefGoogle Scholar
Blanchard, E (1847) Researches sur l’organisation des vers. Annales des Sciences Naturelles, Zoologie 8, 119149, 271–341.Google Scholar
Blasco-Costa, I and Locke, SA (2017) Life history, systematics and evolution of the Diplostomoidea Poirier, 1886: progress, promises and challenges emerging from molecular studies. Advances in Parasitology 98, 167225.CrossRefGoogle ScholarPubMed
Blasco-Costa, I, Poulin, R and Presswell, B (2016) Species of Apatemon Szidat, 1928 and Australapatemon Sudarikov, 1959 (Trematoda: Strigeidae) from New Zealand: Linking and characterising life cycle stages with morphology and molecules. Parasitology Research 115, 271289.10.1007/s00436-015-4744-0CrossRefGoogle ScholarPubMed
Brabec, J, Kostadinova, A, Scholz, T and Littewood, TJ (2015) Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): A molecular resource for taxonomy and molecular epidemiology of important fish pathogens. Parasites & Vectors 8, 336. https://doi.org/10.1186/s13071-015-0949-4.CrossRefGoogle ScholarPubMed
Brandes, G (1888) Die Familie der Holostomeae. Ein Prodromus zu einer Monographie derselben. Universitat Leipzig.Google Scholar
Cech, G, Sándor, D, Molnár, K, Paulus, P, Papp, M, Preiszner, B, Vitál, Z, Varga, Á and Székely, C (2020) New record of metacercariae of the North American Posthodiplostomum centrarchi (Digenea, Diplostomidae) in pumpkinseed (Lepomis gibbosus) in Hungary. Acta Veterinaria Hungarica 68, 2029.10.1556/004.2020.00001CrossRefGoogle Scholar
Chappell, LH, Hardie, LJ and Secombes, CJ (1994) Diplostomiasis: The disease and host parasite interactions. In Pike, AW and Lewis, JW (eds), Parasitic Diseases of Fish. Otley: Samara Publishing Limited, 5986.Google Scholar
Chibwana, FD, Nkwengulila, G, Locke, SA, McLaughlin, JD and Marcogliese, DJ (2015) Completion of the life cycle of Tylodelphys mashonense (Sudarikov, 1971) (Digenea: Diplostomidae) with DNA barcodes and rDNA sequences. Parasitology Research 114, 36753682.10.1007/s00436-015-4595-8CrossRefGoogle ScholarPubMed
Dubois, G (1934) Contribution à l’étude des Hémistomes (Alariidae) du Musée de Vienne. Bulletin de la Société Neuchâteloise des Sciences Naturelles 59, 145183.Google Scholar
Dubois, G (1936a) Les diplostomes de reptiles (Trematoda: Proterodiplostomidae nov. fam.) du Musée de Vienne. Bulletin de la Société Neuchâteloise des Sciences Naturelles 61, 580.Google Scholar
Dubois, G (1936b) Nouveaux principes de classification des Trématodes du groupe des Strigeida (Notes préliminaires). Revue Suisse de Zoologie 43, 507515.10.5962/bhl.part.117684CrossRefGoogle Scholar
Dubois, G (1938) Monographie des Strigeida (Trematoda). Mémoires de la Société Neuchâteloise des Sciences Naturelles 6, 1535.Google Scholar
Dubois, G (1944) A propos de la spécificité parasitaire des Strigeida. Bulletin de la Société Neuchâteloise des Sciences Naturelles 69, 5103.Google Scholar
Dubois, G (1951) Nouvelle clé de détermination des groupes systématiques et des genres de Strigeida Poche (Trematoda). Revue Suisse de Zoologie 58, 639691.Google Scholar
Dubois, G (1953) Systématique des Strigeida. Complément de la monographie. Mémoires de la Société Neuchâteloise des Sciences Naturelles 8, 1141.Google Scholar
Dubois, G (1968) Synopsis des Strigeidae et des Diplostomatidae (Trematoda). Mémoires de la Société Neuchâteloise des Sciences Naturelles 10, 1258.Google Scholar
Dubois, G (1970a) Les fondements de la taxonomie des Strigeata La Rue (Trematoda: Strigeida). Revue Suisse de Zoologie 77, 663685.10.5962/bhl.part.75922CrossRefGoogle Scholar
Dubois, G (1970b) Synopsis des Strigeidae et des Diplostomatidae (Trematoda). Mémoires de la Société Neuchateloise des Sciences Naturelles 10, 259727.Google Scholar
Dubois, G (1982) Répertoire des synonymes récentes de genres et d’espèces de la superfamille des Strigeoidea Railliet, 1919 (Trematoda). Bulletin de la Société Neuchâteloise des Sciences Naturelles 105, 163183.Google Scholar
Dubois, G (1985) Quelques Strigeoideas (Trematoda) récoltés chez des oiseaux du Paraguay par la Mission Claude Weber, automne 1983, du Muséum d’Histoire naturelle de Genève. Revue Suisse de Zoologie 92, 641648.CrossRefGoogle Scholar
Dubois, G (1987) Systématique des Cyathocotyloidea (Trematoda: Strigeata). Bulletin de la Société Neuchâteloise des Sciences Naturelles 110, 4143.Google Scholar
Dubois, G (1988) Quelques Strigeoidea (Trematoda) récoltés au Paraguay par les expéditions du Muséum d’Histoire naturelle de Genève, au cours des années 1979, 1982 et 1985. Revue Suisse de Zoologie 95, 521532.CrossRefGoogle Scholar
Dubois, G (1989) Répertoire des synonymes des Cyathocotyloidea (Trematoda: Strigeata). Bulletin de la Société Neuchâteloise des Sciences Naturelles 112, 3946.Google Scholar
Faltýnková, A, Kudlai, O, Pantoja, C, Jouet, D and Skírnisson, K (2023) Prey-mimetism in cercariae of Apatemon (Digenea, Strigeidae) in freshwater in northern latitudes. Parasitology Research 122, 815831.10.1007/s00436-023-07779-6CrossRefGoogle ScholarPubMed
Faltýnková, A, O’Dwyer, K, Pantoja, C, Jouet, D, Skírnisson, K and Kudlai, O (2024) Trematode species diversity in the faucet snail, Bithynia tentaculata at the western edge of its native distribution, in Ireland. Journal of Helminthology 98, e52. https://doi.org/10.1017/S0022149X24000397.Google ScholarPubMed
Freeman, RS, Stuart, PF, Cullen, JB, Ritchie, AC, Mildon, A, Fernandes, BJ and Bonin, R (1976) Fatal human infection with mesocercariae of the trematode Alaria americana. American Journal of Tropical Medicine and Hygiene 25, 803807.10.4269/ajtmh.1976.25.803CrossRefGoogle ScholarPubMed
Gibson, DI (1996) Guide to the Parasites of Fishes of Canada, Part IV. Ottawa: NRC Press.Google Scholar
Gibson, GG, Broughton, E and Choquette, LPE (1972) Waterfowl mortality caused by Cyathocotyle bushiensis Khan 1962 (Trematoda: Cyathocotylidae), St. Lawrence River, Quebec. Canadian Journal Zoology 50, 13511356.Google ScholarPubMed
González-García, MT, López-Jiménez, A, Ortega-Olivares, MP, Sereno-Uribe, AL, Pérez-Ponce de León, G and García-Varela, M (2024) Unravelling the diversity of Posthodiplostomum Dubois, 1936 (Trematoda: Diplostomidae) in fish-eating birds from the Neotropical region of Mexico, with the description of a new species. Parasitology 151, 12251241.10.1017/S0031182024000970CrossRefGoogle ScholarPubMed
Gudla, B, Orlofske, SA, Brant, SV, Tkach, VV, Dubay, S, Holtz, L and Achatz, TJ (2023) Taxonomic re-assessment and morphological redescription of Nematostrigea serpens annulata (Digenea: Strigeidae) from osprey in North America. Journal of Parasitology 109, 550558.10.1645/23-41CrossRefGoogle Scholar
Hall, MC and Wigdor, M (1918) Two new flukes from the dog. Annual Report of the Michigan Academy of Science 20, 139.Google Scholar
Harkema, R and Miller, G (1961) Parallelorchis diglossus n. g., n. sp., a trematode (Strigeida: Diplostomidae) from the Florida raccoon. Journal of Parasitology 47, 611613.Google Scholar
Heneberg, P, Sitko, J, Těšínský, M, Rząd, I and Bizos, J (2018) Central European Strigeidae Railliet, 1919 (Trematoda: Strigeidida): Molecular and comparative morphological analysis suggests the reclassification of Parastrigea robusta Szidat, 1928 into Strigea Abildgaard, 1790. Parasitology International 67, 688701.10.1016/j.parint.2018.07.003CrossRefGoogle ScholarPubMed
Heneberg, P, Sitko, J and Těšínský, M (2020) Paraphyly of Conodiplostomum Dubois, 1937. Parasitology International 76, 102033. https://doi.org/10.1016/j.parint.2019.102033.CrossRefGoogle ScholarPubMed
Hernández-Mena, DI, García-Prieto, L and García-Varela, M (2014) Morphological and molecular differentiation of Parastrigea (Trematoda: Strigeidae) from Mexico, with the description of a new species. Parasitology International 63, 315323.10.1016/j.parint.2013.11.012CrossRefGoogle ScholarPubMed
Hernández-Mena, DI, García-Varela, M and Pérez-Ponce de León, G (2017) Filling the gaps in the classification of the Digenea Carus, 1863: Systematic position of the Proterodiplostomidae Dubois, 1936 within the superfamily Diplostomoidea Poirier, 1886, inferred from nuclear and mitochondrial DNA sequences. Systematic Parasitology 94, 833848.Google ScholarPubMed
Herrmann, KK and Sorensen, RE (2009) Seasonal dynamics of two mortality-related trematodes using an introduced snail. Journal of Parasitology 95, 823828.10.1645/GE-1922.1CrossRefGoogle ScholarPubMed
Hoeve, J and Scott, ME (1988) Ecological studies on Cyathocotyle bushiensis (Digenea) and Sphaeridiotrema globulus (Digenea), possible pathogens of dabbling ducks in southern Québec. Journal of Wildlife Diseases 24, 407421.10.7589/0090-3558-24.3.407CrossRefGoogle ScholarPubMed
Hoogendoorn, C, Smi, NJ and Kudlai, O (2019) Molecular and morphological characterization of four diplostomid metacercariae infecting Tilapia sparrmanii (Perciformes: Cichlidae) in the North West Province, South Africa. Parasitology Research 118, 14031416.10.1007/s00436-019-06285-yCrossRefGoogle ScholarPubMed
Hoogendoorn, C, Smit, NJ and Kudlai, O (2020) Resolution of the identity of three species of Diplostomum (Digenea: Diplostomidae) parasitizing freshwater fishes in South Africa, combining molecular and morphological evidence. International Journal for Parasitology: Parasites and Wildlife 11, 5061.Google ScholarPubMed
Huston, DC, Cutmore, SC and Cribb, TH (2018) Molecular systematics of the digenean community parasitising the cerithiid gastropod Clypeomorus batillariaeformis Habe & Kusage on the Great Barrier Reef. Parasitology International 67, 722735.10.1016/j.parint.2018.07.008CrossRefGoogle ScholarPubMed
Keller, S, Roderick, CL, Caris, C, Grear, DA and Cole, RA (2021) Acute mortality in California tiger salamander (Ambystoma californiense) and Santa Cruz long-toed salamander (Ambystoma macrodactylum croceum) caused by Ribeiroia ondatrae (Class: Trematoda). International Journal for Parasitology: Parasites and Wildlife 16, 255261.Google Scholar
Kumar, S, Stecher, G and Tamura, K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33, 18701874.10.1093/molbev/msw054CrossRefGoogle ScholarPubMed
La Rue, GR (1957) The classification of digenetic Trematoda: A review and a new system. Experimental Parasitology 6, 306344.10.1016/0014-4894(57)90025-5CrossRefGoogle ScholarPubMed
Lemly, AD and Esch, GW (1984) Effects of the trematode Uvulifer ambloplitis on juvenile bluegill sunfish, Lepomis macrochirus: ecological implications. Journal of Parasitology 70, 475492.10.2307/3281395CrossRefGoogle Scholar
Locke, SA, Drago, FB, López-Hernández, D, Chibwana, FD, Núñez, V, Van Dam, A, Fernanda Achinelly, M, Johnson, PTJ, Costa Alves de Assis, J, Lane de Melo, A and Alves Pinto, H (2021) Intercontinental distributions, phylogenetic position and life cycles of species of Apharyngostrigea (Digenea, Diplostomoidea) illuminated with morphological, experimental, molecular and genomic data. International Journal for Parasitology 51, 667683.10.1016/j.ijpara.2020.12.006CrossRefGoogle ScholarPubMed
Locke, SA, McLaughlin, JD, Dayanandan, S and Marcogliese, DJ (2010a) Diversity and specificity in Diplostomum spp. metacercariae in freshwater fishes revealed by cytochrome c oxidase 1 and internal transcribed spacer sequences. International Journal for Parasitology 40, 333343.10.1016/j.ijpara.2009.08.012CrossRefGoogle Scholar
Locke, SA, McLaughlin, JD, Lapierre, AR, Johnson, PT and Marcogliese, DJ (2011) Linking larvae and adults of Apharyngostrigea cornu, Hysteromorpha triloba, and Alaria mustelae (Diplostomoidea: Digenea) using molecular data. Journal of Parasitology 97, 846851.10.1645/GE-2775.1CrossRefGoogle ScholarPubMed
Locke, SA, McLaughlin, JD and Marcogliese, DJ (2010b) DNA barcodes show cryptic diversity and a potential physiological basis for host specificity among Diplostomoidea (Platyhelminthes: Digenea) parasitizing freshwater fishes in the St. Lawrence River, Canada. Molecular Ecology 19, 28132827.10.1111/j.1365-294X.2010.04713.xCrossRefGoogle Scholar
Locke, SA, Van Dam, AR, Caffara, M, Pinto, HA, López-Hernández, D and Blanar, CA (2018) Validity of the Diplostomoidea and Diplostomida (Digenea, Platyhelminthes) upheld in phylogenomic analysis. International Journal for Parasitology 48, 10431059.10.1016/j.ijpara.2018.07.001CrossRefGoogle ScholarPubMed
López-Hernández, D, Locke, SA, de Assis, JCA, Drago, FB, de Melo, AL, Rabelo, EML and Pinto, HA (2019) Molecular, morphological and experimental-infection studies of cercariae of five species in the superfamily Diplostomoidea (Trematoda: Digenea) infecting Biomphalaria straminea (Mollusca: Planorbidae) in Brazil. Acta Tropica 199, 105082. https://doi.org/10.1016/j.actatropica.2019.105082.CrossRefGoogle ScholarPubMed
López-Hernández, D, Locke, SA, Melo, AL, Rabelo, ÉM and Pinto, HA (2018) Molecular, morphological and experimental assessment of the life cycle of Posthodiplostomum nanum Dubois, 1937 (Trematoda: Diplostomidae) from Brazil, with phylogenetic evidence of the paraphyly of the genus Posthodiplostomum Dubois, 1936. Infection, Genetics and Evolution 63, 95103.10.1016/j.meegid.2018.05.010CrossRefGoogle ScholarPubMed
López-Jiménez, A, González-García, MT, Andrade-Gómez, L and García-Varela, M (2023) Phylogenetic analyses based on molecular and morphological data reveal a new species of Strigea Abildgaard, 1790 (Digenea: Strigeidae) and taxonomic changes in strigeids infecting Neotropical birds of prey. Journal of Helminthology 97, e35. https://doi.org/10.1017/S0022149X23000196.CrossRefGoogle ScholarPubMed
López-Jiménez, A, González-García, MT and García-Varela, M (2022) Molecular and morphological evidence suggests the reallocation from Parastrigea brasiliana (Szidat, 1928) Dubois, 1964 to Apharyngostrigea Ciurea, 1927 (Digenea: Strigeidae), a parasite of boat-billed heron (Cochlearius cochlearius) from the Neotropical region. Parasitology International 86, 102468. https://doi.org/10.1016/j.parint.2021.102468CrossRefGoogle ScholarPubMed
López-Jiménez, A, Pérez-Ponce de León, G and García-Varela, M (2018) Molecular data reveal high diversity of Uvulifer (Trematoda: Diplostomidae) in Middle America, with the description of a new species. Journal of Helminthology 92, 725739.CrossRefGoogle ScholarPubMed
Marcogliese, DJ and Locke, SA (2021) Infection of Diplostomum spp. in invasive round gobies in the St Lawrence River, Canada. Journal of Helminthology 95, e64. https://doi.org/10.1017/S0022149X21000559.Google Scholar
Matisz, CE, Goater, CP and Bray, D (2010) Density and maturation of rodlet cells in brain tissue of fathead minnows (Pimephales promelas) exposed to trematode cercariae. International Journal for Parasitology 40, 307312.CrossRefGoogle ScholarPubMed
Möhl, K, Grosse, K, Hamedy, A, Wüste, T, Kabelitz, P and Lücker, E (2009) Biology of Alaria spp. and human exposition risk to Alaria mesocercariae – a review. Parasitology Research 105, 115.10.1007/s00436-009-1444-7CrossRefGoogle ScholarPubMed
Montes, MM, Croci, Y, Santopolo, L, Barneche, J, Ferrari, W, Cardarella, GFR and Martorelli, SR (2022) Metacercariae in the brain of Erythrinus cf. erythrinus (Characiformes: Erythrinidae) from Iguazú National Park (Argentina): Do they belong to Dolichorchis lacombeensis (Digenea, Diplostomidae)? Journal of Helminthology 96, e61. https://doi.org/10.1017/S0022149X22000487.CrossRefGoogle ScholarPubMed
Moszczynska, A, Locke, SA, McLaughlin, JD, Marcogliese, DJ and Crease, TJ (2009) Development of primers for the mitochondrial cytochrome c oxidase 1 gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Molecular Ecology Resources 9, 7582.10.1111/j.1755-0998.2009.02634.xCrossRefGoogle Scholar
Mühling, P (1896) Beiträge zur Kenntnis der Trematoden. Archiv für Naturgeschichte 62, 243279.Google Scholar
Nakao, M and Sasaki, M (2021) Trematode diversity in freshwater snails from a stopover point for migratory waterfowls in Hokkaido, Japan: An assessment by molecular phylogenetic and population genetic analyses. Parasitology International 83, 102329. https://doi.org/10.1016/j.parint.2021.102329.CrossRefGoogle ScholarPubMed
Negrelli, DC, Vieira, DHMD, Abdallah, VD and Azevedo, RK (2020) Molecular characterization of the progenetic metacercariae Crocodilicola pseudostoma parasitizing Rhamdia quelen (Siluriformes, Heptapteridae) in Brazil. Anais da Academia Brasileira de Ciências 92, e20181388. https://doi.org/10.1590/0001-3765202020181388.CrossRefGoogle ScholarPubMed
Nguyen, TC, Li, Y-C, Makaoloutou, P, Jimenez, LA and Sato, H (2012) Posthodiplostomum sp. Metacercariae in the trunk muscle of northern snakeheads (Channa argus) from the Fushinogawa River, Yamaguchi, Japan. Journal of Veterinary Medical Science 74, 13671372.10.1292/jvms.12-0025CrossRefGoogle ScholarPubMed
Nicoll, W (1937) Vermes. In Zoological Record , Volume LXXIII. London: Zoological Society of London, 80.Google Scholar
Niewiadomska, K (2002a) Family Bolbocephalodidae Strand, 1935. In Gibson, DI, Jones, A and Bray, RA (eds), Keys to the Trematoda , Volume 1. Wallingford: CAB International and The Natural History Museum, 197198.10.1079/9780851995472.0197CrossRefGoogle Scholar
Niewiadomska, K (2002b) Family Brauninidae Wolf, 1903. In Gibson, DI, Jones, A and Bray, RA (eds), Keys to the Trematoda , Volume 1. Wallingford: CAB International and The Natural History Museum, 199200.10.1079/9780851995472.0199CrossRefGoogle Scholar
Niewiadomska, K (2002c) Family Cyathocotylidae Mühling, 1898. In Gibson, DI, Jones, A and Bray, RA (eds), Keys to the Trematoda , Volume 1. Wallingford: CAB International and The Natural History Museum, 201214.10.1079/9780851995472.0201CrossRefGoogle Scholar
Niewiadomska, K (2002d) Family Diplostomidae Poirier, 1886. In Gibson, DI, Jones, A and Bray, RA (eds), Keys to the Trematoda , Volume 1. Wallingford: CAB International and The Natural History Museum, 167196.10.1079/9780851995472.0167CrossRefGoogle Scholar
Niewiadomska, K (2002e) Family Proterodiplostomidae Dubois, 1936. In Gibson, DI, Jones, A and Bray, RA (eds), Keys to the Trematoda , Volume 1. Wallingford: CAB International and The Natural History Museum, 215229.Google Scholar
Niewiadomska, K (2002f) Family Strigeidae Railliet, 1919. In Gibson, DI, Jones, A and Bray, RA (eds), Keys to the Trematoda , Volume 1. Wallingford: CAB International and The Natural History Museum, 231241.10.1079/9780851995472.0231CrossRefGoogle Scholar
Niewiadomska, K (2002g) Superfamily Diplostomoidea Poirier, 1886. In Gibson, DI, Jones, A and Bray, RA (eds), Keys to the Trematoda , Volume 1. Wallingford: CAB International and The Natural History Museum, 159166.Google Scholar
Olson, PD, Cribb, TH, Tkach, VV, Bray, RA and Littlewood, DTJ (2003) Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology 33, 733755.10.1016/S0020-7519(03)00049-3CrossRefGoogle ScholarPubMed
Overstreet, R and Curran, SS (2004) Defeating diplostomid dangers in USA catfish aquaculture. Folia Parasitologica 51, 153165.10.14411/fp.2004.019CrossRefGoogle Scholar
Overstreet, RM, Curran, SS, Pote, LM, King, DT, Blend, CK and Grater, WD (2002). Bolbophorus damnificus n. sp. (Digenea: Bolbophoridae) from the channel catfish Ictalurus punctatus and American white pelican Pelecanus erythrorhynchos in the USA based on life-cycle and molecular data. Systematic Parasitology 52, 8196.10.1023/A:1015696622961CrossRefGoogle Scholar
Palmieri, JR, Krishnasamy, M and Sullivan, JT (1979) Strigeoid trematodes of Malaysia with descriptions of a new genus and three new species. Journal of Helminthology 53, 5163.10.1017/S0022149X00005745CrossRefGoogle ScholarPubMed
Pérez-Ponce de León, G and Hernández-Mena, DI (2019) Testing the higher-level phylogenetic classification of Digenea (Platyhelminthes, Trematoda) based on nuclear DNA sequences before entering the age of the ‘next-generation’ Tree of Life. Journal of Helminthology 93, 260276.10.1017/S0022149X19000191CrossRefGoogle ScholarPubMed
Pérez-Ponce de León, G, Sereno-Uribe, A, Pinacho-Pinacho, C and García-Varela, M (2022) Assessing the genetic diversity of the metacercariae of Posthodiplostomum minimum (Trematoda: Diplostomidae) in middle American freshwater fishes: One species or more? Parasitology 149, 239252.10.1017/S0031182021001748CrossRefGoogle ScholarPubMed
Pernett, SCD, Brant, SV and Locke, SA (2022) First integrative study of the diversity and specificity of metacercariae of Posthodiplostomum Dubois, 1936 from native and introduced fishes in the Caribbean. Parasitology 149, 18941909.10.1017/S0031182022001214CrossRefGoogle Scholar
Pieters, W, Hoyer, M, Verstappen, F, Wolters, M, Ijzer, J, de Jong, S, Cremers, H and Kik, M (2014) Fatal Ichthyocotylurus erraticus infestation in Inca terns (Larosterna inca) in a zoological collection. Avian Diseases 58, 333336.10.1637/10662-091513-Case.1CrossRefGoogle Scholar
Poche, F (1925) Das System der Platodaria. Archiv für Naturgeschichte, Abt. A 91, 1459.Google Scholar
Poirier, J (1886) Sur les Diplostomidae. Archives de zoologie expérimentale et générale 4, 327346.Google Scholar
Pyrka, E, Kanarek, G, Zaleśny, G and Hildebrand, J (2021) Leeches as the intermediate host for strigeid trematodes: Genetic diversity and taxonomy of the genera Australapatemon Sudarikov, 1959 and Cotylurus Szidat, 1928. Parasites & Vectors 14, 44. https://doi.org/10.1186/s13071-020-04538-9.CrossRefGoogle Scholar
Queiroz, M, López-Hernández, D, Locke, S, Pinto, H and Anjos, L (2020) Metacercariae of Heterodiplostomum lanceolatum (Trematoda: Proterodiplostomidae) found in Leptodactylus podicipinus (Anura: Leptodactylidae) from Brazil: A morphological, molecular and ecological study. Journal of Helminthology 94, e66. https://doi.org/10.1017/S0022149X19000646.CrossRefGoogle Scholar
Railliet, A (1919) Nouveaux trématodes du chien. Recueil de Médecine Vétérinaire 95, 527.Google Scholar
Randall, RM and Bray, RA (1983) Mortalities of jackass penguin Sphenicus demersus chicks caused by trematode worms Cradiocephaloides physalis. South African Journal of Zoology 18, 4546.10.1080/02541858.1983.11447813CrossRefGoogle Scholar
Rochat, EC, Blasco-Costa, I, Scholz, T and Unmack, PJ (2020) High diversity of metazoan parasites in carp gudgeons (Eleotridae: Hypseleotris spp.) from Eastern Australia. Journal of Helminthology 94, e146. https://doi.org/10.1017/S0022149X20000280.Google ScholarPubMed
Ronquist, F and Huelsenbeck, JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.10.1093/bioinformatics/btg180CrossRefGoogle ScholarPubMed
Rosser, TG, Alberson, NR, Khoo, LH, Woodyard, ET, Pote, LM and Griffin, MJ (2016) Characterization of the life cycle of a fish eye fluke, Austrodiplostomum ostrowskiae (Digenea: Diplostomidae), with notes on two other diplostomids infecting Biomphalaria havanensis (Mollusca: Planorbidae) from catfish aquaculture ponds in Mississippi, USA. Journal of Parasitology 102, 260274.10.1645/15-850CrossRefGoogle ScholarPubMed
Shoop, WL (1989) Systematic analysis of the Diplostomidae and Strigeidae (Trematoda). Journal of Parasitology 75, 2132.10.2307/3282929CrossRefGoogle ScholarPubMed
Schwelm, J, Kudlai, O, Smit, NJ, Selbach, C and Sures, B (2020) High parasite diversity in a neglected host: Larval trematodes of Bithynia tentaculata in Central Europe. Journal of Helminthology 94, e120. https://doi.org/10.1017/S0022149X19001093.CrossRefGoogle Scholar
Sereno-Uribe, AL, Andrade-Gómez, L, Ostrowski de Núñez, M, Pérez-Ponce de León, GP and García-Varela, M (2019) Assessing the taxonomic validity of Austrodiplostomum spp. (Digenea: Diplostomidae) through nuclear and mitochondrial data. Journal of Parasitology 105, 102112.10.1645/18-51CrossRefGoogle ScholarPubMed
Shamsi, S, Day, S, Zhu, X, McLellan, M, Barton, DP, Dang, M and Nowak, BF (2021) Wild fish as reservoirs of parasites on Australian Murray cod farms. Aquaculture 539, 736584. https://doi.org/10.1016/j.aquaculture.2021.736584.CrossRefGoogle Scholar
Shigin, AA (1986) [Trematode Fauna of the USSR. Genus Diplostomum. Metacercariae]. Moscow: Nauka. (In Russian).Google Scholar
Shigin, AA (1993) [ Trematodes of the Fauna of Russia and Neighbouring Regions. Genus Diplostomum. Adults ]. Moscow: Nauka. (In Russian).Google Scholar
Sokolov, SG, Vlasenkov, SA, Bugmyrin, SV, Kalmykov, AP and Lebedeva, DI (2024) Phylogeny and morphology of some European cyathocotylid digeneans (Trematoda: Diplostomoidea). Journal of Helminthology 98, e44. https://doi.org/10.1017/S0022149X24000348.CrossRefGoogle ScholarPubMed
Soldánová, M, Georgieva, S, Roháčová, J, Knudsen, R, Kuhn, JA, Henriksen, EH, Siwertsson, A, Shaw, JC, Kuris, AM, Amundsen, P-A, Scholz, T, Lafferty, KD and Kostadinova, A (2017) Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. International Journal for Parasitology 47, 327345.10.1016/j.ijpara.2016.12.008CrossRefGoogle Scholar
Steenrod, CL, Jones, JR and Marino, JA (2019) Variation in trematode infection in snails associated with land cover and water chemistry in the central Illinois River watershed. Journal of Parasitology 105, 546554.CrossRefGoogle ScholarPubMed
Stoyanov, B, Georgieva, S, Pankov, P, Kudlai, O, Kostadinova, A and Georgiev, BB (2017) Morphology and molecules reveal the alien Posthodiplostomum centrarchi Hoffman, 1958 as the third species of Posthodiplostomum Dubois, 1936 (Digenea: Diplostomidae) in Europe. Systematic Parasitology 94, 120.10.1007/s11230-016-9680-6CrossRefGoogle Scholar
Strand, E (1935) Miscellanea nomenclatorica zoologica et palaeontologica. VIII. Folia Zoologica et Hydrobiologica, Riga 8, 176.Google Scholar
Sudarikov, VE (1959) [Order Strigeidida (La Rue, 1926) Sudarikov, 1959. Part 1. Morphological characteristics of strigeids and superfamily Strigeoidea Railliet, 1919.]. In Skrjabin, KI (ed), [Trematodes of Animals and Man] Osnovy Trematodologii 16. Moscow: Izdatel’stvo Akademii Nauk SSSR, 217631. (In Russian.)Google Scholar
Sudarikov, VE (1960a) [Order Strigeidida (La Rue, 1926) Sudarikov, 1959. Part 2. Superfamily Diplostomatoidea Nicoll, 1937, family Diplostomatidae (Poirier, 1886).]. In Skrjabin, KI (ed), [Trematodes of Animals and Man] Osnovy Trematodologii 17, Moscow: Izdatel’stvo Akademii Nauk SSSR, 155530. (In Russian)Google Scholar
Sudarikov, VE (1960b) [Suborder Strigeata La Rue, 1926. Part 3. Superfamily Diplostomatoidea Nicoll, 1937. Families Alariidae Tubangui, 1922 and Bolbocephalodidae Strand, 1935. Superfamily Proterodiplostomatoidea Sudarikov, 1960.]. In Skrjabin, KI (ed), [Trematodes of Animals and Man] Osnovy Trematodologii 18, Moscow: Izdatel’stvo Akademii Nauk SSSR, 451694. (In Russian)Google Scholar
Sudarikov, VE (1961) [Order Strigeidida (La Rue, 1926) Sudarikov, 1959. Part 4. Suborder Cyathocotylata Sudarikov, 1959.]. In Skrjabin, KI (ed), [Trematodes of Animals and Man] Osnovy Trematodologii 19, Moscow, Izdatel’stvo Akademii Nauk SSSR, 267469. (In Russian)Google Scholar
Sudarikov, VE (1984) [Trematodes of the Fauna of the USSR. Strigeids]. Moscow: Nauka. (In Russian)Google Scholar
Sudarikov, VE (1997) [On the revision of the trematode system of the order Strigeidida]. Trudy Instituta Parazitologii RAN 41, 157167. (In Russian)Google Scholar
Tăbăran, F, Sándor, AD, Marinov, M, Cătoi, C and Mihalca, AD (2013) Alaria alata infection in European mink. Emerging Infectious Diseases 19, 15471549.CrossRefGoogle ScholarPubMed
Tkach, VV and Achatz, TJ (2025) Crassiphiala bulboglossa. Trends in Parasitology 41, 162163.10.1016/j.pt.2024.11.013CrossRefGoogle ScholarPubMed
Tkach, VV, Achatz, TJ, Hildebrand, J and Greiman, SE (2018) Convoluted history and misleading morphology: Molecular phylogenetic analysis of dicrocoeliids from mammals reveals true systematic position of the Anenterotrematidae Yamaguti, 1958 (Platyhelminthes, Digenea). Parasitology International 67, 501508.10.1016/j.parint.2018.04.009CrossRefGoogle Scholar
Tkach, VV, Achatz, TJ, Pulis, EE, Junker, K, Snyder, SD, Bell, JA, Halajian, A and Melo, FTV (2020) Phylogeny and systematics of the Proterodiplostomidae Dubois, 1936 (Digenea: Diplostomoidea) reflect the complex evolutionary history of the ancient digenean group. Systematic Parasitology 97, 409439.10.1007/s11230-020-09928-2CrossRefGoogle ScholarPubMed
Tkach, VV, Kudlai, O and Kostadinova, A (2016) Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea). International Journal for Parasitology 46, 171185.10.1016/j.ijpara.2015.11.001CrossRefGoogle ScholarPubMed
Tubangui, MA (1922) Two new intestinal trematodes from the dog in China. Proceedings of the National Museum 60, 111.10.5479/si.00963801.60-2415.1CrossRefGoogle Scholar
Uhrig, EJ, Spagnoli, ST, Tkach, VV, Kent, ML and Mason, RT (2015) Alaria mesocercariae in the tails of red-sided garter snakes: evidence for parasite-mediated caudectomy. Parasitology Research 114, 44514461.10.1007/s00436-015-4686-6CrossRefGoogle ScholarPubMed
Van Steenkiste, N, Locke, SA, Castelin, M, Marcogliese, DJ and Abbott, C (2015) New primers for DNA barcoding of digeneans and cestodes (Platyhelminthes). Molecular Ecology Resources 15, 945952.Google ScholarPubMed
Vermaak, A, Smit, NJ and Olena, K (2021) Molecular and morphological characterization of the metacercariae of two species of Cardiocephaloides (Digenea: Strigeidae) infecting endemic South klipfish (Perciformes: Clinidae). Folia Parasitologica 68, 007. https://doi.org/10.14411/fp.2021.007.CrossRefGoogle ScholarPubMed
Yamaguti, S (1958 ) Systema Helminthum. Volume I. The Digenetic Trematodes of Vertebrates. Parts I and II. New York: Interscience Publishers Inc.Google Scholar
Yamaguti, S (1971) Synopsis of Digenetic Trematodes of Vertebrates . Vols I and II. Tokyo: Keigaku Publishing Company.Google Scholar
Young, MA, Orlofske, SA, Jadin, RC, Tkach, VV, Greiman, SE, Locke, SA, Fernandes, TF, Brant, SV, Bates, KM, Michalski, M and Achatz, TJ (in press) New faces in an old genus: Museum collections and new materials reveal new diversity of Alaria and an updated key to species. Journal of Parasitology.Google Scholar
Figure 0

Figure 1. Phylogenetic interrelationships among 215 diplostomoidean taxa (see Supplementary Table S1) based on Bayesian Inference (BI) analysis of the partial 28S rDNA gene sequences. Bayesian inference posterior probability values lower than 80% are not shown. The scale-bar indicates the number of substitutions per site. * Families as recognized in the present study. Abbreviations for families as recognized prior to this work: C, Cyathocotylidae; D, Diplostomidae; P, Proterodiplostomidae; S, Strigeidae. Shaded rectangles indicate genera.

Figure 1

Figure 2. Some of the major morphological features of diplostomids. (a) Alaria marcianae, anterior part of prosoma with horn-like pseudosuckers, ventral view (after Young et al.in press); (b) Alaria trashpandae, anterior part of prosoma with invaginated pseudosuckers, ventral view (after Young et al.in press); (c) Schwartzitrema sp., anterior part of prosoma with pseudosuckers with auricular expansions, ventral view; (d) Neodiplostomum nephrocystis, anterior part of prosoma with apical organ, ventral view (after Achatz et al. in press); (e) Herpetodiplostomum vogti, sucker-like holdfast organ, ventral view (after Achatz et al.2021b); (f) Cotylurus cornutus, bilobed holdfast organ, lateral view (after Dubois 1968); (g) Nematostrigea annulata, bilobed holdfast organ with thin, crimped lobes, ventral view (after Gudla et al.2023); (h) Allodiplostomum scolopacis, holdfast organ with 3 massive lobes (from Dubois 1970b); (i, j) Posthodiplostomum dawnsherryae, posterior part of opisthosoma with genital cone and preputial fold in genital atrium (i) and everted (j), ventral view (after Achatz et al.2025); (k, l) Pseudocrassiphiala tulipifera, posterior part of opisthosoma with genital cone and preputial fold in genital atrium, ventral (k) and lateral (l) views (after Achatz et al.2023b); (m) Bolbophorus indianus, posterior part of opisthosoma with genital cone and bulb, lateral view (after Dubois 1970b); (n) Neofibricola smiti, genital atrium with atrial sphincter (after Achatz et al.2022d); (o) Australapatemon intermedius, posterior part of opisthosoma with well-developed genital cone with internal rugae, lateral view (after Dubois 1968); (p) A. marcianae, seminal vesicle and ejaculatory duct with muscular pouch-like part, ventral view (after Young et al.in press); (q) Crassiphiala jeffreybelli, seminal vesicle with dilated part, ventral view (after Achatz et al.2023b); (r) Dungalabatrema kostadinovae, posterior part of opisthosoma with pouch surrounding paraprostate, lateral view (after Achatz et al.2022a); (s) Pseudocrocodilicola americaniense, posterior part of opisthosoma with muscular pouch surrounding hermaphroditic duct, ventral view (after Tkach et al.2020); (t) Sphincterodiplostomum joaopinhoi, posterior part of opisthosoma with muscular sphincter and genital pore, dorsal view (after Achatz et al.2021a); (u) Polycotyle ornata, posterior part of opisthosoma with sucker-like structures on body wall, lateral view (after Tkach et al.2020); (v) Proterodiplostomum longum, posterior part of opisthosoma with well-developed sucker-like structure in genital atrium, lateral view (after Tkach et al.2020); (w) Afroproterodiplostomum ingwenyae, posterior part of opisthosoma with massive genital cone with sucker-like structure, lateral view (after Achatz et al.2022a). Abbreviations for structures: AO, apical organ; AS, atrial sphincter; D, dilated part of seminal vesicle; E, egg; EP, pouch like part of ejaculatory duct; GA, genital atrium; GB, genital bulb; GC, genital cone; GP, genital pore; HD, hermaphroditic duct; H, holdfast organ; P, paraprostate; Po, pouch; PF, preputial fold; PG, proteolytic gland; Ps, pseudosucker; R, genital cone with rugae; SV, seminal vesicle; S, sphincter; SS, sucker-like structure; PT, posterior testis; U, uterus; VS, ventral sucker.

Supplementary material: File

Achatz and Tkach supplementary material 1

Achatz and Tkach supplementary material
Download Achatz and Tkach supplementary material 1(File)
File 658.2 KB
Supplementary material: File

Achatz and Tkach supplementary material 2

Achatz and Tkach supplementary material
Download Achatz and Tkach supplementary material 2(File)
File 36.5 KB