Hostname: page-component-6bb9c88b65-zjgpb Total loading time: 0 Render date: 2025-07-24T06:19:00.486Z Has data issue: false hasContentIssue false

Molecular evidence for phylogenetic affinities of Rhabdochona coronacauda (Thelazioidea: Rhabdochonidae) with other spiruromorph nematodes

Published online by Cambridge University Press:  22 July 2025

K.S. Vainutis*
Affiliation:
https://ror.org/03aj6fx58Far Eastern State Technical Fisheries University, Vladivostok 690087, Russian Federation A.V. Zhirmunsky National Scientific Center of Marine Biology Far Eastern Branch, Russian Academy of Sciences (NSCMB FEB RAS), Vladivostok 690041, Russian Federation
A.N. Voronova
Affiliation:
https://ror.org/00bb01z14Pacific State Medical University (PSMU), Vladivostok 690002, Russian Federation
V.P. Belyaev
Affiliation:
https://ror.org/03aj6fx58Far Eastern State Technical Fisheries University, Vladivostok 690087, Russian Federation
N.E. Zyumchenko
Affiliation:
Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690920, Russian Federation
M.E. Shapovalov
Affiliation:
Pacific branch of the Federal State Budget Scientific Institution ‘Russian Federal Research Institute of Fisheries and oceanography’, 4 Alley Shevchenko, Vladivostok 690091, Russian Federation
*
Corresponding author: K.S. Vainutis; Email: vainutisk@gmail.com

Abstract

The nematodes isolated from three species of Chanodichthys were completely consistent with the morphological description of Rhabdochona coronacauda. We provide new morphometric data for R. coronacauda, which slightly differ from those of the original description. For the first time, we performed a phylogenetic analysis by using both primary (linear) and secondary (folded structures) sequences of the complete 18S rRNA gene for three superfamilies of Spiruromorpha. The interspecific genetic distances within the genus Rhabdochona were 0.13%–3.06% between 18 species. Rhabdochona coronacauda was sister to a sub-group consisting of the type species R. denudata, R. hospeti, R. hellichi, and R. turkestanica. The secondary structures reconstructed for 35 species of three superfamilies from the order Spiruromorpha comprised 16 conformations of the region including helix 39 and expansion segment 9, and two conformations of helix 17. Helix 39 can be used to differentiate single species or separate species groups of Rhabdochona. The structures of helix 39 in both Rhabdochonidae and Cystidicolidae with Salmonema had an identical 39a domain but differed in the 39b domain and expansion segment 9. In addition, the structure of the helix 39–expansion segment 9 domain within and between families of different superfamilies and their resolution on the phylogenetic tree in combination did not correspond to the accepted classification of spiruromorph nematodes. Helix 17 did not differ within Rhabdochona, or between Rhabdochonidae and Cystidicolidae. At the superfamily level, helix 17 can distinguish Thelazioidea, Spiruroidea, and Habronematoidea from Rhabdochonidae, and Cystidicolidae from Spirocercidae, Thelaziidae, and Pneumospiruridae.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aleshin, VV, Kedrova, OS, Milyutina, IA, Vladychenskaya, NS and Petrov, NB (1998) Secondary structure of some elements of 18S rRNA suggests that strongylid and a part of rhabditid nematodes are monophyletic. FEBS Letters 429(1), 48. https://doi.org/10.1016/S0014-5793(98)00550-XCrossRefGoogle Scholar
Blaxter, M and Koutsovoulos, G (2015) The evolution of parasitism in Nematoda. Parasitology 142(Suppl 1), S26S39. https://doi.org/10.1017/S0031182014000791CrossRefGoogle ScholarPubMed
Callejón, R, Nadler, S, De Rojas, M, Zurita, A, Petrášová, J and Cutillas, C (2013) Molecular characterization and phylogeny of whipworm nematodes inferred from DNA sequences of cox1 mtDNA and 18S rDNA. Parasitology Research 112, 39333949. https://doi.org/10.1007/s00436-013-3584-zCrossRefGoogle ScholarPubMed
Caspeta-Mandujano, JM, Salinas-Ocampo, JC, Suárez-Rodríguez, R, Martínez-Ramírez, C and Matamoros, WA (2021) Morphological and molecular evidence for a new rhabdochonid species, Rhabdochona (Nematoda: Rhabdochonidae), parasitizing Eugerres mexicanus (Perciformes: Gerreidae), from the Lacantún River in the Biosphere Reserve of Montes Azules, Chiapas, Mexico. Revista mexicana de biodiversidad 92, e923266. https://doi.org/10.22201/ib.20078706e.2021.92.3266CrossRefGoogle Scholar
Choudhury, A and Nadler, SA (2018) Phylogenetic Relationships of Spiruromorph Nematodes (Spirurina: Spiruromorpha) In North American Freshwater Fishes. Journal of Parasitology 104(5), 496504. https://doi.org/10.1645/17-195CrossRefGoogle ScholarPubMed
Darriba, D, Taboada, GL, Doallo, R and Posada, D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772. https://doi.org/10.1038/nmeth.2109CrossRefGoogle ScholarPubMed
Deng, YP, Suleman, Zhang, Li, XL, Li, R, Fu, LY, Liu GH, YT and Yao, C (2022) Aonchotheca (Nematoda: Capillariidae) is validated as a separated genus from Capillaria by both mitochondrial and nuclear ribosomal DNA. Parasites & Vectors 15, 493. https://doi.org/10.1186/s13071-022-05609-9CrossRefGoogle ScholarPubMed
Dobson, A, Lafferty, KD, Kuris, AM, Hechinger, RF and Jetz, W (2008) Colloquium paper: homage to Linnaeus: how many parasites? How many hosts? Proceedings of the National Academy of Sciences USA 105(Suppl. 1), 1148211489. https://doi.org/10.1073/pnas.0803232105CrossRefGoogle ScholarPubMed
Dujardin, F (1845) Histoire naturelle des helminthes ou vers intestinaux. Paris: Librairie Encyclopédique de Roret.10.5962/bhl.title.10123CrossRefGoogle Scholar
Gerbi, SA (1996) Expansion segments: Regions of variable size that interrupt the universal core secondary structure of ribosomal RNA. In Zimmermann, RA and Dahlberg, AE (eds), Ribosomal RNA–structure, Evolution, Processing and Function in Protein Synthesis. Boca Raton: CRC Press, 7187.Google Scholar
Gonçalves, LT, Bianchi, FM, Deprá, M and Marques, CC (2021) Barcoding a can of worms: testing cox1 performance as a DNA barcode of Nematoda. Genome 64(7), 705717. https://doi.org/10.1139/gen-2020-0140CrossRefGoogle Scholar
Hirasawa, R and Urabe, M (2003) Ephemera strigata (Insecta: Ephemeroptera: Ephemeridae) is the intermediate host of the nematodes Rhabdochona denudata honshuensis and Rhabdochona coronacauda in Japan. The Journal of parasitology 89(3), 617620. https://doi.org/10.1645/GE-3106RNCrossRefGoogle Scholar
Huelsenbeck, JP, Ronquist, F, Nielsen, R and Bollback, JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 23102314. https://doi.org/10.1126/science.1065889CrossRefGoogle ScholarPubMed
Kumar, S, Stecher, G, Li, M, Knyaz, C and Tamura, K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular biology and evolution 35(6), 15471549. https://doi.org/10.1093/molbev/msy096CrossRefGoogle ScholarPubMed
Laetsch, DR, Heitlinger, EG, Taraschewski, H, Nadler, SA and Blaxter, ML (2012) The phylogenetics of Anguillicolidae (Nematoda: Anguillicoloidea), swimbladder parasites of eels. BMC Evolutionary Biology 12, 60. https://doi.org/10.1186/1471-2148-12-60CrossRefGoogle ScholarPubMed
Lebanan, K, Singh, PR and Mohilal, N (2023) First report and molecular characterisation of Rhabdochona hospeti Thapar, 1950 (Thelazioidea: Rhabdochonidae) from tor barb, Tor tor (Hamilton) (Cyprinidae), in Assam, India. Folia parasitologica 70, 2023.019. https://doi.org/10.14411/fp.2023.019CrossRefGoogle Scholar
Mejía-Madrid, HH (2012) Biogeographic Hierarchical Levels and Parasite Speciation. InTech. http://doi.org/10.5772/31267Google Scholar
Mejía-Madrid, HH, Choudhury, A and Pérez-Ponce de León, GP (2007) Phylogeny and biogeography of Rhabdochona Railliet, 1916 (Nematoda: Rhabdochonidae) species from the Americas. Systematic parasitology 67(1), 118. https://doi.org/10.1007/s11230-006-9065-3CrossRefGoogle ScholarPubMed
Moravec, F (1995) Trichopteran larvae (Insecta) as the intermediate hosts of Rhabdochona hellichi (Nematoda: Rhabdochonidae), a parasite of Barbus barbus (Pisces). Parasitology Research 81, 268270. https://doi.org/10.1007/bf00937122CrossRefGoogle Scholar
Moravec, F (2007) Some aspects of the taxonomy and biology of adult spirurine nematodes parasitic in fishes: a review. Folia parasitologica 54(4), 239257. https://doi.org/10.14411/fp.2007.033CrossRefGoogle ScholarPubMed
Moravec, F (2010) Some aspects of the taxonomy, biology, possible evolution and biogeography of nematodes of the spirurine genus Rhabdochona Railliet, 1916 (Rhabdochonidae, Thelazioidea). Acta Parasitologica 55(2), 144160. https://doi.org/10.2478/s11686-010-0017-3CrossRefGoogle Scholar
Moravec, F, Ermolenko, AV, Besprozvannykh, VV and Scholz, T (2012) New data on the morphology of some Far-Eastern species of Rhabdochona (Nematoda: Rhabdochonidae), as revealed by SEM observations. Folia parasitologica 59(3), 195208. https://doi.org/10.14411/fp.2012.027CrossRefGoogle ScholarPubMed
Mwita, CJ and Nkwengulila, G (2010) Phylogenetic relationships of the metazoan parasites of the clariid fishes of Lake Victoria inferred from partial 18S rDNA sequences. Tanzania Journal of Science 36, 4758.Google Scholar
Nyaku, ST, Sripathi, VR, Kantety, RV, Gu, YQ, Lawrence, K and Sharma, GC (2013) Characterization of the two intra-individual sequence variants in the 18S rRNA gene in the plant parasitic nematode, Rotylenchulus reniformis. PLoS ONE 8(4), e60891. https://doi.org/10.1371/journal.pone.0060891CrossRefGoogle ScholarPubMed
Roskin, GI and Levinson, LB (1957) Microscopic technology. Moscow: Nauka. [In Russian]Google Scholar
Santacruz, A, Ornelas-García, C and Pérez-Ponce de León, G (2020) Diversity of Rhabdochona mexicana (Nematoda: Rhabdochonidae), a parasite of Astyanax spp. (Characidae) in Mexico and Guatemala, using mitochondrial and nuclear genes, with the description of a new species. Journal of Helminthology E34, 94. https://doi.org/10.1017/S0022149X19000014Google Scholar
Shtein, GA (1959) The life-cycle and ecology of the nematode Rhabdochona denudata (Dujardin, 1845). Doklady Akademii Nauk SSSR 127(6), 13201321. [In Russian]Google Scholar
Skrjabin, KI, Sobolev, AA and Ivashkin, VM (1967) Family Rhabdochonidae Skrjabin, 1946. In Roitman, VA (ed), Essentials of Nematology, Vol. 16. Spirurata of animalsand man and the diseases caused by them. [I.P.S.T.Translation No. 5904, Jerusalem (1971).]Google Scholar
Truett, GE, Heeger, P, Mynatt, RL, Truett, AA, Walker, JA and Warman, ML (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). BioTechniques 29(1), 5254. https://doi.org/10.2144/00291bm09CrossRefGoogle ScholarPubMed
Vainutis, KS, Voronova, AN, Andreev, ME, Pankratov, DV and Shchelkanov, MYu (2023) Morphological and molecular description of Dictyocaulus xanthopygus sp. nov. (Nematoda: Trichostrongyloidea) from the Manchurian wapiti Cervus elaphus xanthopygus. Systematic Parasitology 100(5), 557570. https://doi.org/10.1007/s11230-023-10105-4CrossRefGoogle ScholarPubMed
Vainutis, KS, Voronova, AN, Andreev, ME and Zyumchenko, NE (2024) Morphological and molecular identification of tissue nematode Philometroides strelkovi (Chromadorea: Dracunculoidea) from three cyprinid species in the North of Primorsky region. Inland water biology 17(5), 19. https://doi.org/10.1134/S1995082924700408CrossRefGoogle Scholar
Wijová, M, Moravec, F, Horák, A and Lukes, J (2006) Evolutionary relationships of Spirurina (Nematoda: Chromadorea: Rhabditida) with special emphasis on dracunculoid nematodes inferred from SSU rRNA gene sequences. International journal for parasitology 36(9), 10671075. https://doi.org/10.1016/j.ijpara.2006.04.005CrossRefGoogle ScholarPubMed
Zuker, M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31(13), 34063415. https://doi.org/10.1093/nar/gkg595CrossRefGoogle ScholarPubMed
Supplementary material: File

Vainutis et al. supplementary material 1

Vainutis et al. supplementary material
Download Vainutis et al. supplementary material 1(File)
File 20.8 KB
Supplementary material: File

Vainutis et al. supplementary material 2

Vainutis et al. supplementary material
Download Vainutis et al. supplementary material 2(File)
File 13.5 KB