Hostname: page-component-6bb9c88b65-wr9vw Total loading time: 0 Render date: 2025-07-24T05:54:11.223Z Has data issue: false hasContentIssue false

Characterizing the microbiome of Dujardinascaris helicina (Nematoda: Ascarididae) isolated from wild American crocodiles in Belize

Published online by Cambridge University Press:  11 July 2025

C. Griffin*
Affiliation:
https://ror.org/01wspgy28 University of Hawaii at Manoa , Honolulu, Hawaii, USA University of Georgia, Athens, Georgia, USA
D. Dinh
Affiliation:
https://ror.org/01wspgy28 University of Hawaii at Manoa , Honolulu, Hawaii, USA
D. Singletary
Affiliation:
https://ror.org/01wspgy28 University of Hawaii at Manoa , Honolulu, Hawaii, USA
M. Tellez
Affiliation:
Crocodile Research Coalition, Maya Beach, Stann Creek, Belize
H. Sung
Affiliation:
https://ror.org/01wspgy28 University of Hawaii at Manoa , Honolulu, Hawaii, USA
*
Corresponding author: C. Griffin, Email: chaseng@hawaii.edu

Abstract

Microbiomes are communities of microorganisms that form close associations with metazoan hosts and have important roles in host biological processes. With the advent of Next Generation Sequencing, the microbiomes of myriad animals and plants have been described. However, the microbiomes of parasites have received little attention, which is surprising considering their ecological and medical importance. This study characterizes, for the first time, the microbiome of Dujardinascaris helicina, a gastrointestinal nematode parasite of the American crocodile. Dujardinascaris helicina were isolated from crocodiles residing in two geographically separated habitats across Belize. Using 16S sequencing, we compare β-diversity between sampling locations using generalized linear mixed modeling. Our results show that D. helicina microbiomes differ in composition depending on location. We also show that D. helicina microbiomes show strong shifts toward consolidation of specific taxa when proximity to human modified environments increases.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arisdakessian, C, Cleveland, SB and Belcaid, M (2020) MetaFlow| mics: Scalable and reproducible nextflow pipelines for the analysis of microbiome marker data. In Practice and Experience in Advanced Research Computing 2020: Catch the Wave 2020, 120124.10.1145/3311790.3396664CrossRefGoogle Scholar
Bharti, M, Nagar, S and Negi, RK (2023) Riverine pollution influences the intraspecific variation in the gut microbiome of an invasive fish, Cyprinus carpio (Linn., 1758). 3 Biotech 13, 320.10.1007/s13205-023-03747-0CrossRefGoogle Scholar
Cain, JL, Norris, JK, Ripley, NE, Suri, P, Finnerty, CA, Gravatte, HS and Nielsen, MK (2022) The microbial community associated with Parascaris spp. infecting juvenile horses. Parasites & Vectors 15(1), 408.10.1186/s13071-022-05533-yCrossRefGoogle ScholarPubMed
Cain, JL, Norris, JK, Swan, MP and Nielsen, MK (2024) A diverse microbial community and common core microbiota associated with the gonad of female Parascaris spp. Parasitology Research 123(1), 56.10.1007/s00436-023-08086-wCrossRefGoogle Scholar
Caporaso, JG, Lauber, CL, Walters, WA, Berg-Lyons, D, Lozupone, CA, Turnbaugh, PJ, Fierer, N and Knight, R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences 108(supplement_1), 45164522.10.1073/pnas.1000080107CrossRefGoogle Scholar
Clayton, JB, Vangay, P, Huang, HU, Ward, T, Hillmann, BM, Al-Ghalith, GA, Travis, DA, Long, HT, Tuan, BV, Minh, VV and Cabana, F (2016) Captivity humanizes the primate microbiome. Proceedings of the National Academy of Sciences 113(37), 1037610381.10.1073/pnas.1521835113CrossRefGoogle ScholarPubMed
Coon, KL, Hegde, S and Hughes, GL (2022) Interspecies microbiome transplantation recapitulates microbial acquisition in mosquitoes. Microbiome 10(1), 58.10.1186/s40168-022-01256-5CrossRefGoogle ScholarPubMed
Dheilly, NM, Bolnick, D, Bordenstein, S, Brindley, PJ, Figuères, C, Holmes, EC, Martínez Martínez, J, Phillips, AJ, Poulin, R and Rosario, K (2017) Parasite microbiome project: Systematic investigation of microbiome dynamics within and across parasite-host interactions. MSystems 2(4), 10128.10.1128/mSystems.00050-17CrossRefGoogle ScholarPubMed
Dheilly, NM, Martínez Martínez, J, Rosario, K, Brindley, PJ, Fichorova, RN, Kaye, JZ, Kohl, KD, Knoll, LJ, Lukeš, J, Perkins, SL, Poulin, R., Schriml, L and Thompson, LR (2019) Parasite microbiome project: Grand challenges. PLoS Pathogens 15(10), e1008028.10.1371/journal.ppat.1008028CrossRefGoogle ScholarPubMed
Florkowski, MR, Hamer, SA and Yorzinski, JL (2023) Brief exposure to captivity in a songbird is associated with reduced diversity and altered composition of the gut microbiome. FEMS Microbiology Ecology 99(9), fiad096.10.1093/femsec/fiad096CrossRefGoogle Scholar
Frankel-Bricker, J, Song, MJ, Benner, MJ and Schaack, S (2020) Variation in the microbiota associated with Daphnia magna across genotypes, populations, and temperature. Microbial Ecology 79, 731742.10.1007/s00248-019-01412-9CrossRefGoogle ScholarPubMed
Gibson, KM, Nguyen, BN, Neumann, LM, Miller, M, Buss, P, Daniels, S, Ahn, MJ, Crandall, KA and Pukazhenthi, B (2019) Gut microbiome differences between wild and captive black rhinoceros–implications for rhino health. Scientific Reports 9(1), 7570.10.1038/s41598-019-43875-3CrossRefGoogle ScholarPubMed
Gilbert, JA, Blaser, MJ, Caporaso, JG, Jansson, JK, Lynch, SV and Knight, R (2018) Current understanding of the human microbiome. Nature Medicine 24(4), 392400.10.1038/nm.4517CrossRefGoogle ScholarPubMed
Griffin, CD, Weber, DE, Seabourn, P, Waianuhea, LK and Medeiros, MC (2023) Filtration of environmentally sourced aquatic media impacts laboratory-colonised Aedes albopictus early development and adult bacteriome composition. Medical and Veterinary Entomology 37(4), 693704.10.1111/mve.12672CrossRefGoogle ScholarPubMed
Heidrich, V, Valles-Colomer, M and Segata, N (2025) Human microbiome acquisition and transmission. Nature Reviews Microbiology 21, 17.Google Scholar
Hugot, JP, Baujard, P and Morand, S (2001) Biodiversity in helminths and nematodes as a field of study: An overview. Nematology 3(3), 199208.10.1163/156854101750413270CrossRefGoogle Scholar
Jorge, F, Dheilly, NM and Poulin, R (2020) Persistence of a core microbiome through the ontogeny of a multi-host parasite. Frontiers in Microbiology 11, 954.10.3389/fmicb.2020.00954CrossRefGoogle ScholarPubMed
Jorge, F, Dheilly, NM, Froissard, C, Wainwright, E and Poulin, R (2022) Consistency of bacterial communities in a parasitic worm: Variation throughout the life cycle and across geographic space. Microbial Ecology 83(3), 724738.10.1007/s00248-021-01774-zCrossRefGoogle Scholar
McMurdie, PJ and Holmes, S (2013) phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PloS One 8(4), e61217.10.1371/journal.pone.0061217CrossRefGoogle Scholar
Molin, R (1860) Trenta specie di Nematoidi. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, Mathematisch - Naturwissenschaftli-che Classe 40, 331358.Google Scholar
Moravec, F (2001) Some helminth parasites from Morelet’s crocodile, Crocodylus moreletii, from Yucatan, Mexico. Folia Parasitologica 48(1), 4762.10.14411/fp.2001.008CrossRefGoogle ScholarPubMed
Muhie, S, Gautam, A, Mylroie, J, Sowe, B, Campbell, R, Perkins, EJ, Hammamieh, R and Garcia-Reyero, N (2025) Effects of environmental chemical pollutants on microbiome diversity: Insights from shotgun metagenomics. Toxics 13(2), 142.10.3390/toxics13020142CrossRefGoogle ScholarPubMed
Rice, AN, Ross, JP, Finger, AG and Owen, R (2005) Application and evaluation of a stomach flushing technique for alligators. Herpetological Review 36(4), 400401.Google Scholar
Salloum, PM, Jorge, F, Dheilly, NM and Poulin, R (2023) Eco-evolutionary implications of helminth microbiomes. Journal of Helminthology 97, e22.10.1017/S0022149X23000056CrossRefGoogle ScholarPubMed
San Juan, PA, Castro, I and Dhami, MK (2021) Captivity reduces diversity and shifts composition of the Brown Kiwi microbiome. Animal Microbiome 3, 18.10.1186/s42523-021-00109-0CrossRefGoogle ScholarPubMed
Seabourn, PS, Weber, DE, Spafford, H and Medeiros, MC (2023) Aedes albopictus microbiome derives from environmental sources and partitions across distinct host tissues. MicrobiologyOpen 12(3), e1364.10.1002/mbo3.1364CrossRefGoogle ScholarPubMed
Sepulveda, MS and Kinsella, JM (2013) Helminth collection and identification from wildlife. Journal of Visualized Experiments: JoVE 14(82), 51000.Google Scholar
Sinnathamby, G, Henderson, G, Umair, S, Janssen, P, Bland, R and Simpson, H (2018) The bacterial community associated with the sheep gastrointestinal nematode parasite Haemonchus contortus. PLoS One 13(2), e0192164.10.1371/journal.pone.0192164CrossRefGoogle ScholarPubMed
The Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486, 207214.10.1038/nature11234CrossRefGoogle Scholar
Wang, X, Wang, Z, Pan, H, Qi, J, Li, D, Zhang, L, Shen, Y, Xiang, Z and Li, M (2021) Captivity influences the gut microbiome of Rhinopithecus roxellana. Frontiers in Microbiology 12, 763022.10.3389/fmicb.2021.763022CrossRefGoogle ScholarPubMed
White, EC, Houlden, A, Bancroft, AJ, Hayes, KS, Goldrick, M, Grencis, RK and Roberts, IS (2018) Manipulation of host and parasite microbiotas: Survival strategies during chronic nematode infection. Science Advances 4(3), eaap7399.10.1126/sciadv.aap7399CrossRefGoogle ScholarPubMed
Xue, X, Jia, J, Yue, X, Guan, Y, Zhu, L and Wang, Z (2021) River contamination shapes the microbiome and antibiotic resistance in sharpbelly (Hemiculter leucisculus). Environmental Pollution 268, 115796.10.1016/j.envpol.2020.115796CrossRefGoogle ScholarPubMed