Hostname: page-component-54dcc4c588-xh45t Total loading time: 0 Render date: 2025-10-09T06:10:22.724Z Has data issue: false hasContentIssue false

Pellioditis ciscaucasica n. sp. from Caucasian gastropods and a role of the invasive slug Krynickillus melanocephalus in dissemination of malacopathogenic nematodes

Published online by Cambridge University Press:  17 September 2025

E. S. Ivanova*
Affiliation:
Centre of Parasitology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences , Moscow, Russia
S. E. Spiridonov
Affiliation:
Centre of Parasitology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences , Moscow, Russia
*
Corresponding author: E. S. Ivanova; Email: elena_s_ivanova@rambler.ru

Abstract

Invasive agriolimacid slug Krynickillus melanocephalus was found infected by several species of malacopathogenic nematodes of the genus Pellioditis. Now, this Caucasian slug is actively spreading across Europe. Pellioditis is a genus of nematodes capable of killing molluscs, and its two species have been developed into widely used biological control agents. As malacopathogenic nematodes can pose a threat to survival of native, susceptible gastropod species, the distribution of K. melanocephalus and examination of associated parasites are needed. All Pellioditis species found in association with K. melanocephalus were of Caucasian origin. The new Pellioditis species was found to belong to a different clade within the genus than the other five Caucasian species and is the first representative of the clade Papillosa in the Caucasus.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andrássy, I (1983) A Taxonomic Review of the Suborder Rhabditina (Nematoda: Secernentea). Paris, France: O.R.S.T.O.M.Google Scholar
Antzée-Hyllseth, H, Trandem, N, Torp, T and Haukeland, S (2020) Prevalence and parasite load of nematodes and trematodes in an invasive slug and its susceptibility to a slug parasitic nematode compared to native gastropods. Journal of Invertebrate Pathology 173, 107372.10.1016/j.jip.2020.107372CrossRefGoogle Scholar
Azzam, KM (2003) Description of nematode Phasmarhabditis tawfiki n. sp. isolated from Egyptian terrestrial snails and slugs. Journal of the Egyptian German Society of Zoology 42, 7987.Google Scholar
Azzam, KM (2023) Phasmarhabditis eagyptiaca n. sp. (Nematoda: Rhabditidae) isolated from Egyptian terrestrial gastropods and its role as control bio-agent. Acta Parasitologica 68, 637650.10.1007/s11686-023-00694-xCrossRefGoogle Scholar
Bellard, C, Cassey, P and Blackburn, TM (2016) Alien species as a driver of recent extinctions. Biology Letters 12, 20150623.10.1098/rsbl.2015.0623CrossRefGoogle ScholarPubMed
Borleis, F (2018) Entdeckung von Krynickillus melanocephalus (Kaleniczenko 1851) in Sachsen. Mitteilungen der deutschen malakozoologischen Gesellscahft 98, 6162.Google Scholar
Bössneck, U and Feldemann, A (2003) Zur Ausbreitung von Neozoa im Stadtgebiet von Erfurt am Beispiel der Landschnecken Cernuella neglecta (Draparnaud, 1805), Monacha cartusiana (O. F. Müller, 1774) and Krynickillus melanocephalus Kaleniczenko, 1851 (Mollusca: Gastropoda). Veröffentlichungen Naturkundemuseum Erfurt 22, 115125.Google Scholar
Bowles, J, Blair, DP and McManus, D (1992) Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Molecular and Biochemical Parasitology 54, 165173.10.1016/0166-6851(92)90109-WCrossRefGoogle ScholarPubMed
Chinchio, E, Crotta, M, Romeo, C, Drewe, JA, Guitian, J and Ferrari, N (2020) Invasive alien species and disease risk: An open challenge in public and animal health. PLoS Pathogens 16(10), e1008922.10.1371/journal.ppat.1008922CrossRefGoogle ScholarPubMed
Colautti, RI, Ricciardi, A, Grigorovich, IA and MacIsaac, HJ (2004) Is invasion success explained by the enemy release hypothesis? Ecology Letters 7, 721733.10.1111/j.1461-0248.2004.00616.xCrossRefGoogle Scholar
Cutler, J and Rae, R (2022) The malacopathogenic nematode Phasmarhabditis californica does not affect the survival of earthworms (Lumbricus terrestris and Eisenia fetida) or insects (Galleria mellonella and Tenebrio molitor). Biocontrol Science and Technology 32, 765770.10.1080/09583157.2021.2016627CrossRefGoogle Scholar
Damyanov, SG and Likharev, IM (1975) Terrestrial slugs (Gastropoda terrestra). Fauna na Bulgarya 4, Bulgarska Akademya Nauk, Sofia. 425 pp. (in Bulgarian).Google Scholar
Darriba, D, Taboada, GL, Doallo, R and Posada, D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.10.1038/nmeth.2109CrossRefGoogle ScholarPubMed
Derycke, S, Vanaverbeke, J, Rigaux, A, Backeljau, T and Moens, T (2010) Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free-living marine nematodes. PLoS ONE, 5(10), e13716.10.1371/journal.pone.0013716CrossRefGoogle ScholarPubMed
Dougherty, EC (1953) The genera of the subfamily Rhabditinae Micoletzky, 1922 (Nematoda). In Dayal, JS and Suresh, Kunwar (eds), Thapar Commemoration Volume, A Collection of Articles Presented to Prof G S Thapar on His Sixtieth Birthday. Lucknow, Uttar Pradesh, India, Department of Zoology, University of Lucknow, 6976.Google Scholar
Dreijers, E, Stalažs, A, Pilāte, D, Jakubāne, I and Jundzis, M (2017) Agricultural importance of Agriolimacidae slugs and the first notes on damage in horticulture made by Krynickillus melanocephalus Kaleniczenko, 1851 (Gastropoda: Agriolimacidae) in Latvia. Zinātniski praktiskā konference ‘Līdzsvarota Lauksaimniecība’, 23.02.2017, LLU, Jelgava, Latvija (in Latvian).Google Scholar
Dunn, AM, Torchin, ME, Hatcher, MJ, Kotanen, PM, Blumenthal, DM, Byers, JE, Coon, CAC, Frankel, VM, Holt, RD, Hufbauer, RA, Kanarek, AR, Schierenbeck, KA, Wolfe, LM and Perkins, SE (2012) Indirect effects of parasites in invasions. Functional Ecology 26, 12621274.10.1111/j.1365-2435.2012.02041.xCrossRefGoogle Scholar
Essl, F, Lenzner, B, Courchamp, F, Dullinger, S, Jeschke, JM, Kühn, I, Leung, B, Moser, D, Roura-Pascual, N and Seebens, H (2019) Introducing AlienScenarios: a project to develop scenarios and models of biological invasions for the 21st century. NeoBiota 45, 117.10.3897/neobiota.45.33366CrossRefGoogle Scholar
Filipiak, A, Haukeland, S, Zając, K, Lachowska-Cierlik, D and Hatteland, B (2020) Helminths associated with terrestrial slugs in some parts of Europe. Bonn Zoological Bulletin 69, 1126.Google Scholar
Grewal, PS, Grewal, SK, Tan, L and Adams, BJ (2003) Parasitism of molluscs by nematodes: types of associations and evolutionary trends. Journal of Nematology 35(2), 146156.Google ScholarPubMed
Gural-Sverlova, NV, Balashov, IA and Gural, RI (2009) Recent distribution of terrestrial molluscs of the family Agriolimacidae on the territory of Ukraine. Ruthenica 19, 5361 (in Russian).Google Scholar
Howe, DK, Ha, AD, Colton, A, De Ley, IT, Rae, RG, Ross, J, Wilson, M, Nermut, J, Zhao, Z, Mc Donnell, RJ and Denver, DR (2020) Phylogenetic evidence for the invasion of a commercialized European Phasmarhabditis hermaphrodita lineage into North America and New Zealand. PLoS One 15(8), e0237249.10.1371/journal.pone.0237249CrossRefGoogle ScholarPubMed
Huang, R-E, Ye, W, Ren, X and Zhao, Z (2015) Morphological and molecular characterization of Phasmarhabditis huizhouensis sp. nov. (Nematoda: Rhabditidae), a new rhabditid nematode from south China. PLoS One 10, e0144386.Google ScholarPubMed
Gorgadze, O, Troccoli, A, Fanelli, E, Tarasco, E and Luca, F (2022) Phasmarhabditis thesamica n. sp. (Nematoda: Rhabditidae), a new slug nematode from southern slope of Caucasus, Georgia. Nematology 24, 617629.Google Scholar
Ivanova, ES (2023) Infection of the invasive slug Arion vulgaris, by the nematode, Alloionema appendiculatum, and possible host-switching. Russian Journal of Nematology 31, 121123.Google Scholar
Ivanova, ES, Clausi, M, Leone, D and Spiridonov, SE (2023) Phasmarhabditis villasmundi sp. n. infecting land gastropods in the Nature Reserve ‘Speleological Complex Villasmundo – S. Alfio’ in Syracuse Province, Sicily.Nematology 25, 169180.Google Scholar
Ivanova, ES, Geraskina, AP and Spiridonov, SE (2020) Two new species of Phasmarhabditis Andrássy, 1976 (Nematoda: Rhabditidae) associated with land snails in Northwest Caucasus, Russian Federation: description and molecular affiliation. Nematology 22, 179197.10.1163/15685411-00003299CrossRefGoogle Scholar
Ivanova, ES, Gorgadze, OA, Lortkhipanidze, M and Spiridonov, SE (2021) Phasmarhabditis akhaldaba n. sp. associated with a slug Deroceras reticulatum in Lesser Caucasus mountains in Republic of Georgia. Russian Journal of Nematology 29, 7588.Google Scholar
Ivanova, ES, Mazakina, VV and Spiridonov, SE (2022) Invasive alien slug Arion vulgaris Moquin-Tandon, 1855 (Gastropoda: Pulmonata: Arionidae) in Moscow parks and its co-introduced parasite Alloionema appendiculatum Schneider, 1859. Acta Parasitologica 67, 921931.10.1007/s11686-022-00541-5CrossRefGoogle ScholarPubMed
Ivanova, ES and Spiridonov, SE (2017) Phasmarhabditis meridionalis n. sp. (Nematoda: Rhabditidae) from a land snail Quantula striata (Gastropoda: Dyakiidae) from Southern Vietnam. Russian Journal of Nematology 25, 129140.Google Scholar
Ivanova, ES and Spiridonov, SE (2022) Phasmarhabditis quinamensis n. sp. (Nematoda: Rhabditidae) from tropical terrestrial gastropods in southern Vietnam. Nematology 24, 225239.10.1163/15685411-bja10126CrossRefGoogle Scholar
Ivanova, ES and Spiridonov, SE (2023) Synopsis of gastropod-associated nematodes of Ciscaucasia (Russian Federation) with the description of a new species of Pellioditis Dougherty, 1953 (syn. Phasmarhabditis Andrássy, 1976). Journal of Helminthology 97, e90.10.1017/S0022149X2300072XCrossRefGoogle ScholarPubMed
Ivanova, ES and Spiridonov, SE (2024) Discovery of the malacopathogenic nematode Pellioditis akhaldaba from the Caucasus in alien slugs in the Main Botanical Garden in Moscow. Nematology 26, 803815.10.1163/15685411-bja10340CrossRefGoogle Scholar
Jaume-Ramis, A, Alberto Martínez-Ortí, A, Delgado-Serra, S, Santiago Mas-Coma, M, Foronda, P and Paredes-Esquivel, C (2023) Potential intermediate hosts of Angiostrongylus cantonensis in the European Mediterranean region (Mallorca, Spain). One Health 17, 100610.10.1016/j.onehlt.2023.100610CrossRefGoogle ScholarPubMed
Joyce, SA, Reid, A, Driver, F and Curran, J (1994) Application of polymerase chain reaction (PCR) methods to the identification of entomopathogenic nematodes. In Burnell, AM, R-U, Ehlers and Masson, JP (eds.), COST 812: Biotechnology: Genetics of Entomopathogenic nematodesbacterium Complexes. Proceedings of Symposium and Workshop, St Patrick’s College, Maynooth, County Kildare, Ireland. Luxembourg: European Commission, DGXII, 178187.Google Scholar
Kaleniczenko, J (1851) Description d’un nouveau genre de Limaces de la Russie meridionale (Krynickillus). Bulletin de la Société Imperiale des Naturalistes de Moscou 24(1), 215228.Google Scholar
Kanzaki, N and Futai, K (2002) A PCR primer set for determination of phylogenetic relationships of Bursaphelenchus species within the xylophilus group. Nematology 4, 3541.10.1163/156854102760082186CrossRefGoogle Scholar
Kim, JR, Hayes, KA, Yeung, NW and Cowie, RH (2014) Diverse Gastropod Hosts of Angiostrongylus cantonensis, the Rat Lungworm, Globally and with a Focus on the Hawaiian Islands. PLoS One 9(5), e94969.10.1371/journal.pone.0094969CrossRefGoogle ScholarPubMed
Korol, EN and Kornjusin, AV (2002) Introduced population of Krynickillus melanocephalus (Mollusca, Gastropoda, Stylommatophora) recorded in Kyiv and preliminary results of its helminthological investigation. Vestnik Zoologii 36(6), 5759.Google Scholar
Kumar, S, Stecher, G, Li, M, Knyaz, C and Tamura, K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35, 15471549.10.1093/molbev/msy096CrossRefGoogle ScholarPubMed
Laznik, Ž, Majić, I, Trdan, S, Malan, AP, Pieterse, A and Ross, JL (2020) Is Phasmarhabditis papillosa (Nematoda: Rhabditidae) a possible biological control agent against the Spanish slug, Arion vulgaris (Gastropoda: Arionidae)? Nematology 23, 577585.10.1163/15685411-bja10063CrossRefGoogle Scholar
Likharev, IM and Wiktor, AJ (1980) The Fauna of Slugs of the USSR and Adjacent Countries (Gastropoda terrestria nuda) . Fauna SSSR (Novaja serija 122) 3. Leningrad: Nauka (in Russian).Google Scholar
Maćkiewicz, J and Borys, O (2023) First record of invasive slug Krynickillus melanocephalus Kaleniczenko, 1851 (Gastropoda: Eupulmonata: Agriolimacidae) in Poland. Folia Malacologica 31(4), 229235.Google Scholar
Maupas, É (1919) Essais d’hybridation chez des neґmatodes. Bulletin Biologique de la France et de la Belgique 52(3), 466498.Google Scholar
Mc Donnell, RJ, Colton, AJ, Howe, DK and Denver, DR (2020) Lethality of four species of Phasmarhabditis (Nematoda: Rhabditidae) to the invasive slug, Deroceras reticulatum (Gastropoda: Agriolimacidae) in laboratory infectivity trials. Biological Control 150, e104349.10.1016/j.biocontrol.2020.104349CrossRefGoogle Scholar
McIntire, KM and Juliano, SA (2021) Detrimental effects of a failed infection by a co-invasive parasite on a native congeneric parasite and its native host. Biological Invasions 23, 16371648.10.1007/s10530-021-02464-0CrossRefGoogle ScholarPubMed
Meng, S and Bößneck, U (1999) Krynickillus melanocephalus Kaleniczenko 1851 in Deutschland eingeschleppt (Gastropoda: Stylommatophora: Agriolimacidae). Malakologische Abhandlungen, Staatliches Museum für Tierkunde Dresden 19, 303309.Google Scholar
Mengert, H (1953) Nematoden und Schneken. Zeitschrift fur Morphologie und Ökologie der Tiere 41, 311349.CrossRefGoogle Scholar
Miller, MA, Pfeiffer, W and Schwartz, T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE). New Orleans, LA, pp. 18.Google Scholar
Nadler, SA and Hudspeth, DSS (2000) Phylogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution. Journal of Parasitology 86, 380393.CrossRefGoogle ScholarPubMed
Nermut’, J, Holley, M, Ortmayer, LF and Půža, V (2022) New players in the field: ecology and biocontrol potential of three species of mollusc-parasitic nematodes of the genus Phasmarhabditis. BioControl 67, 543553.10.1007/s10526-022-10160-8CrossRefGoogle Scholar
Nermut’, J, Půža, V and Mráček, Z (2016a) Phasmarhabditis apuliae n. sp. (Nematoda: Rhabditidae), a new rhabditid nematode from milacid slugs. Nematology 18, 10951112.CrossRefGoogle Scholar
Nermut’, J, Půža, V, Mekete, T and Mráček, Z (2016b) Phasmarhabditis bonaquaense n. sp. (Nematoda: Rhabditidae), a new slug-parasitic nematode from the Czech Republic. Zootaxa 4179, 530546.Google Scholar
Nermut’, J, Půža, V, Mekete, T and Mráček, Z (2017) Phasmarhabditis bohemica n. sp. (Nematoda: Rhabditidae), a slug-parasitic nematode from the Czech Republic. Nematology 19, 93107.CrossRefGoogle Scholar
Nunn, GB (1992) Nematode Molecular Evolution. PhD dissertation, Genetics, University of Nottingham, Nottingham, UK, 187 pp.Google Scholar
Osche, G (1952) Systematik und Phylogenie der Gattung Rhabditis (Nematoda). Systematik und Phylogenie der Gattung Rhabditis (Nematoda). Zoologische Jahrbücher Abteilung für Systematik. Ökologie und Geographie der Tiere 81, 190280.Google Scholar
Ostrovsky, AM (2017) New records of synanthropic species of slugs Limacus flavus (Linnaeus 1758) and Krynickillus melanocephalus Kaleniczenko, 1851 (Mollusca, Gastropoda, Stylommatophora) in Belarus. Ruthenica 27(14), 155158 (in Russian).10.35885/10.35885/ruthenica.2017.27(4).2CrossRefGoogle Scholar
Pejchar, L and Mooney, HA (2010) The impact of invasive alien species on ecosystem services and human wellbeing. In Perrings, C, Mooney, H and Williamson, M (eds.), Chapter 12: Bioinvasions and Globalization, 161182.Google Scholar
Penagos-Tabares, F, Groß, KM, Hirzmann, J, Hoos, C, Lange, MK, Taubert, A and Hermosilla, C (2020) Occurrence of canine and feline lungworms in Arion vulgaris in a park of Vienna: first report of autochthonous Angiostrongylus vasorum, Aelurostrongylus abstrusus and Troglostrongylus brevior in Austria. Parasitology Research 119(1), 327331.10.1007/s00436-019-06527-zCrossRefGoogle Scholar
Pieterse, A, Haukeland, S, Půža, V, Ross, JL and Malan, AP (2022) Ex vivo development of Phasmarhabditis spp. associated with terrestrial molluscs. Journal of Helminthology 96, e6.10.1017/S0022149X21000663CrossRefGoogle ScholarPubMed
Pieterse, A, Malan, AP, Kruitbos, LM, Sirgel, W and Ross, JL (2017) Nematodes associated with terrestrial slugs from canola fields and ornamental nurseries in South Africa. Zootaxa 4312(1), 194200.10.11646/zootaxa.4312.1.12CrossRefGoogle Scholar
Pieterse, A, Rowson, B, Tiedt, L, Malan, AP, Haukeland, S and Ross, JL (2020) Phasmarhabditis kenyaensis n. sp. (Nematoda: Rhabditidae) from the slug, Polytoxon robustum, in Kenya. Nematology 23, 229245.10.1163/15685411-bja10040CrossRefGoogle Scholar
Poinar, GO and Hess, RT (1977) Immune responses in the earthworm, Aporrectodea trapezoides (Annelida), against Rhabditis pellio (Nematoda). In Bulla, LA and Cheng, TC (eds.), Comparative Pathobiology, 3. Boston, MA: Springer.Google Scholar
Prenter, J, MacNeil, C, Dick, JTA and Dunn, AM (2004) Roles of parasites in animal invasions. Trends in Ecology & Evolution 19, 385390.10.1016/j.tree.2004.05.002CrossRefGoogle ScholarPubMed
Rae, R (2017) The gastropod shell has been co-opted to kill parasitic nematodes. Scientific Reports 7, 4745.10.1038/s41598-017-04695-5CrossRefGoogle ScholarPubMed
Rae, R and Cutler, J (2020) Pathogenicity of wild and commercial Phasmarhabditis hermaphrodita exposed to the pestiferous slug Deroceras invadens. Journal of Invertebrate Pathology 174, 107435.Google Scholar
Romeo, C, Piscitelli, AP, Santicchia, F, Martinoli, A, Ferrari, N and Wauters, LA (2021) Invading parasites: spillover of an alien nematode reduces survival in a native species. Biological Invasions 23, 38473857.10.1007/s10530-021-02611-7CrossRefGoogle Scholar
Ronquist, F, Teslenko, M, van der Mark, P, Ayres, DL, Darling, A, Höhna, S, Larget, B, Liu, L, Suchard, MA and Huelsenbeck, JP (2012) MRBAYES 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology 61, 539542.10.1093/sysbio/sys029CrossRefGoogle Scholar
Ross, JL, Ivanova, ES, Severns, PM and Wilson, MJ (2010) The role of parasite release in invasion of the USA by European slugs. Biological Invasions 12, 603610.CrossRefGoogle Scholar
Ross, JL, Ivanova, ES, Hatteland, BA, Brurberg, MB and Haukeland, S (2015) Survey of nematodes associated with terrestrial slugs in Norway. Journal of Helminthology 5, 583587.Google Scholar
Ross, JL, Pieterse, A, Malan, AP and Ivanova, E (2018) Phasmarhabditis safricana n. sp. (Nematoda: Rhabditidae), a parasite of the slug Deroceras reticulatum from South Africa. Zootaxa 4420, 391404.10.11646/zootaxa.4420.3.5CrossRefGoogle Scholar
Schneider, AF (1859) Über eine Nematodenlarve und gewisse Verscheidenheiten in den 394 Geschlechtsorganen der Nematoden. Zeitschrift für wissenschaftliche Zoologi 10, 176178.Google Scholar
Schneider, A (1866) Monographie der Nematoden. Berlin, Germany: Georg Reimer, 357 pp.Google Scholar
Schurkman, J, De Ley I, Tandingan and Dillman, AR (2022) Lethality of three Phasmarhabditis spp. (P. hermaphrodita, P. californica, and P. papillosa) to Succinea snails. Agriculture 12, 837.10.3390/agriculture12060837CrossRefGoogle Scholar
Seinhorst, JW (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4, 6769.10.1163/187529259X00381CrossRefGoogle Scholar
Shikov, EV (2016) Adventive species of terrestrial malacofauna in the central portion of the Russian plain. Ruthenica 26,153164 (in Russian).Google Scholar
Shinohara, T and Yokoo, T (1958) On a new Rhabditis species (Nematoda, Rhabditidae) found in the alimentary organs of Incilaria confusa (Cockerell) in Japan. Kurume Igakkai zasshi (Journal of the Kurume Medical Association) 21(12), 25802584.Google Scholar
Stalažs, A, Dreijers, E, Ivinskis, P, Rimšaitė, J and Džiugelis, M (2017) Records of Krynickillus melanocephalus Kaleniczenko, 1851 (Gastropoda: Agriolimacidae) in Lithuania. Bulletin of the Lithuanian Entomological Society 1(29), 124128.Google Scholar
Swofford, DL (1998) PAUP*. Phylogenetic Analysis Using Parsimony. Version 4. Sunderland, MA: Sinauer.Google Scholar
De Ley I, Tandingan, Holovachov, O, McDonnell, RJ, Bert, W, Paine, TD and De Ley, P (2016) Description of Phasmarhabditis californica n. sp. and first report of P. papillosa (Nematoda: Rhabditidae) from invasive slugs in the USA. Nematology 18, 175193.10.1163/15685411-00002952CrossRefGoogle Scholar
De Ley I, Tandingan, Kiontke, K, Bert, W, Sudhaus, W and Fitch, DHA (2023) Pellioditis pelhamensis n. sp. (Nematoda: Rhabditidae) and Pellioditis pellio (Schneider, 1866), earthworm associates from different subclades within Pellioditis (syn. Phasmarhabditis Andrássy, 1976). PLOS One 18(9), e0288196.10.1371/journal.pone.0288196CrossRefGoogle Scholar
Tappert, A (2009) Die molluskenfauna von Moskau und der Moskauer Oblast, Russland. Schriften zur Malakozoologie 24, 562.Google Scholar
Thomas, WK, Vida, JT, Frisse, LM, Mundo, M and Baldwin, JG (1997) DNA sequences from formalin-fixed nematodes: integrating molecular and morphological approaches to taxonomy. Journal of Nematology 29, 250254.Google ScholarPubMed
Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F and Higgins, DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24, 48764882.10.1093/nar/25.24.4876CrossRefGoogle Scholar
Tomé, B, Harris, DJ, Perera, A and Damas-Moreira, I (2021) Invasive lizard has fewer parasites than native congener. Parasitology Research 120, 29532957.10.1007/s00436-021-07233-5CrossRefGoogle ScholarPubMed
Torchin, ME, Lafferty, KD, Dobson, AP, McKenzie, VJ and Kuris, AM (2003) Introduced species and their missing parasites. Nature 421, 628630.10.1038/nature01346CrossRefGoogle ScholarPubMed
Trifinopoulos, J, Nguyen, Lam-Tung, von Haeseler, A and Minh, Bui Quang (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44, 232235.10.1093/nar/gkw256CrossRefGoogle ScholarPubMed
Turóci, Á, Fehér, Z, Krízsik, V and Páll-Gergely, B (2020) Two new alien slugs, Krynickillus melanocephalus Kaleniczenko, 1851 and Tandonia kusceri (H. Wagner, 1931), are already widespread in Hungary. Acta Zoologica Academiae Scientiarum Hungaricae 66, 265282.10.17109/AZH.66.3.265.2020CrossRefGoogle Scholar
Valembois, P, Lassègues, M and Roch, P (1992) Formation of brown bodies in the coelomic cavity of the earthworm Eisenia fetida andrei and attendant changes in shape and adhesive capacity of constitutive cells. Developmental & Comparative Immunology 16(2–3), 95101.10.1016/0145-305X(92)90010-ACrossRefGoogle Scholar
Valente, R, Del Rosario Robles, M and Diaz, JI (2020) Gastropods as intermediate hosts of Angiostrongylus spp. in the Americas: bioecological characteristics and geographical distribution. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro 115, e200236.10.1590/0074-02760200236CrossRefGoogle ScholarPubMed
von Proschwitz, T (2020) Rapid invasion of the slug Krynickillus melanocephalus Kaleniczenko, 1851 in Sweden and some notes on the biology and anthropochorous spread of the species in Europe (Gastropoda: Eupulmonata: Agriolimacidae). Folia Malacologica 28, 227234.10.12657/folmal.028.018CrossRefGoogle Scholar
Walther, F, Kijashko, P, Harutyunova, L, Mumladze, L, Neiber, MT and Hausdorf, B (2014) Biogeography of the land snails of the Caucasus region. Tentacle 22, 35.Google Scholar
C-N, Zhang and Q-Z, Liu (2020) Phasmarhabditis zhejiangensis sp. nov. (Nematoda: Rhabditidae), a new rhabditid nematode from Zhejiang, China. PLoS One 15, e0241413.Google Scholar