Hostname: page-component-54dcc4c588-nx7b4 Total loading time: 0 Render date: 2025-10-07T09:46:22.283Z Has data issue: false hasContentIssue false

Zonal jets over small-scale topography: jet properties and energy transfers

Published online by Cambridge University Press:  07 October 2025

Hang-Yu Zhu*
Affiliation:
Centre for Complex Flows and Soft Matter Research, Southern University of Science and Technology , Shenzhen 518055, PR China Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology , Shenzhen 518055, PR China Department of Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
Tian-Yi Pei
Affiliation:
Centre for Complex Flows and Soft Matter Research, Southern University of Science and Technology , Shenzhen 518055, PR China Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology , Shenzhen 518055, PR China
Jin-Han Xie
Affiliation:
Department of Mechanics and Engineering Science at College of Engineering, and State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing 100871, PR China
Ke-Qing Xia*
Affiliation:
Centre for Complex Flows and Soft Matter Research, Southern University of Science and Technology , Shenzhen 518055, PR China Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology , Shenzhen 518055, PR China Department of Physics, Southern University of Science and Technology , Shenzhen 518055, PR China
*
Corresponding authors: Ke-Qing Xia, xiakq@sustech.edu.cn; Hang-Yu Zhu, zhuhytur@hust.edu.cn
Corresponding authors: Ke-Qing Xia, xiakq@sustech.edu.cn; Hang-Yu Zhu, zhuhytur@hust.edu.cn

Abstract

Small-scale topography can significantly influence large-scale motions in geophysical flows, but the dominant mechanisms underlying this complicated process are poorly understood. Here, we present a systematic experimental study of the effect of small-scale topography on zonal jets. The jet flows form under the conditions of fast rotation, a uniform background $\beta$-effect, and sink–source forcing. The small-scale topography is produced by attaching numerous small cones on the curved bottom plate, and the height of the cones is much smaller than the water depth. It is found that for all tested cases, the energy fraction in the zonal mean flow consistently follows a scaling $E_{uZ}/E_{uT}=C_1 l_f^2\epsilon _{\textit{up}}^{-2/5}\beta _{\textit{eff}}^{6/5}$, where $l_f$ is the forcing scale, $\epsilon _{\textit{up}}$ is the upscale energy transfer rate, and $\beta _{\textit{eff}}$ measures the effective $\beta$-effect in the presence of topography. The presence of the small-scale topography weakens the jet strength notably. Moreover, the effect of topography on energy transfers depends on the topography magnitude $\beta _\eta$, and there exist three regimes. At small $\beta _\eta$, the inverse energy transfers are remarkably diminished while the jet pattern remains unchanged. When $\beta _\eta$ increases, a blocked flow pattern forms, and the jet width reaches saturation, becoming independent of the forcing magnitude and $\beta$. At moderate $\beta _\eta$, the inverse energy fluxes are surprisingly enhanced. A further increase of $\beta _\eta$ leads to a greater reduction of the energy fluxes. We finally examine the effect of topography from the perspective of turbulence–topography interaction.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aubert, J., Jung, S. & Swinney, H.L. 2002 Observations of zonal flow created by potential vorticity mixing in a rotating fluid. Geophy. Res. Lett. 29 (18), 23.10.1029/2002GL015422CrossRefGoogle Scholar
Barthel, A., Hogg, A.McC., Waterman, S. & Keating, S. 2017 Jet–topography interactions affect energy pathways to the deep Southern Ocean. J. Phys. Oceanogr. 47 (7), 17991816.10.1175/JPO-D-16-0220.1CrossRefGoogle Scholar
Benilov, E.S. 2000 The stability of zonal jets in a rough-bottomed ocean on the barotropic beta plane. J. Phys. Oceanogr. 30 (4), 733740.10.1175/1520-0485(2000)030<0733:TSOZJI>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Boffetta, G. 2023 Dimensional transitions in turbulence: the effects of rotation and stratification. Atmosphere-BASEL 14 (11), 1688.10.3390/atmos14111688CrossRefGoogle Scholar
Boffetta, G. & Ecke, R.E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427451.10.1146/annurev-fluid-120710-101240CrossRefGoogle Scholar
Bretherton, F.P. & Haidvogel, D.B. 1976 Two-dimensional turbulence above topography. J. Fluid Mech. 78 (1), 129154.10.1017/S002211207600236XCrossRefGoogle Scholar
Buzzicotti, M., Aluie, H., Biferale, L. & Linkmann, M. 2018 Energy transfer in turbulence under rotation. Phys. Rev. Fluids 3 (3), 034802.10.1103/PhysRevFluids.3.034802CrossRefGoogle Scholar
Cabanes, S., Aurnou, J., Favier, B. & Le Bars, M. 2017 A laboratory model for deep-seated jets on the gas giants. Nat. Phys. 13 (4), 387390.10.1038/nphys4001CrossRefGoogle Scholar
Charney, J.G. & DeVore, J.G. 1979 Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci. 36 (7), 12051216.10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Chekhlov, A., Orszag, S.A., Sukoriansky, S., Galperin, B. & Staroselsky, I. 1996 The effect of small-scale forcing on large-scale structures in two-dimensional flows. Phys. D: Nonlinear Phenomena 98 (2–4), 321334.10.1016/0167-2789(96)00102-9CrossRefGoogle Scholar
Constantinou, N.C. & Young, W.R. 2017 Beta-plane turbulence above monoscale topography. J. Fluid Mech. 827, 415447.10.1017/jfm.2017.482CrossRefGoogle Scholar
Davey, M.K. 1980 A quasi-linear theory for rotating flow over topography. Part 1. Steady $\beta$ -plane channel. J. Fluid Mech. 99 (2), 267292.10.1017/S0022112080000614CrossRefGoogle Scholar
Davies, J., Khatri, H. & Berloff, P. 2021 Linear stability analysis for flows over sinusoidal bottom topography. J. Fluid Mech. 911, A33.10.1017/jfm.2020.1082CrossRefGoogle Scholar
Dewar, W.K. & Hogg, A.McC. 2010 Topographic inviscid dissipation of balanced flow. Ocean Model. 32 (1–2), 113.10.1016/j.ocemod.2009.03.007CrossRefGoogle Scholar
Di Nitto, G., Espa, S. & Cenedese, A. 2013 Simulating zonation in geophysical flows by laboratory experiments. Phys. Fluids 25 (8).10.1063/1.4817540CrossRefGoogle Scholar
Dickey, J.O., Ghil, M. & Marcus, S.L. 1991 Extratropical aspects of the 40–50 day oscillation in length-of-day and atmospheric angular momentum. J. Geophys. Res.: Atmos. 96 (D12), 2264322658.10.1029/91JD02339CrossRefGoogle Scholar
Ferrari, R. 2014 What goes down must come up. Nature 513 (7517), 179180.10.1038/513179aCrossRefGoogle ScholarPubMed
Gallet, B. 2024 Two-dimensional turbulence above topography: condensation transition and selection of minimum enstrophy solutions. J. Fluid Mech. 988, A13.10.1017/jfm.2024.365CrossRefGoogle Scholar
Galperin, B., Hoemann, J., Espa, S. & Di Nitto, G. 2014 a Anisotropic turbulence and Rossby waves in an easterly jet: an experimental study. Geophys. Res. Lett. 41 (17), 62376243.10.1002/2014GL060767CrossRefGoogle Scholar
Galperin, B., Nakano, H., Huang, H.-P. & Sukoriansky, S. 2004 The ubiquitous zonal jets in the atmospheres of giant planets and Earth’s oceans. Geophy. Res. Lett. 31, L13303.10.1029/2004GL019691CrossRefGoogle Scholar
Galperin, B. & Read, P.L. 2019 Zonal Jets: Phenomenology, Genesis, and Physics. Cambridge University Press.10.1017/9781107358225CrossRefGoogle Scholar
Galperin, B., Sukoriansky, S. & Dikovskaya, N. 2010 Geophysical flows with anisotropic turbulence and dispersive waves: flows with a $\beta$ -effect. Ocean Dyn. 60, 427441.10.1007/s10236-010-0278-2CrossRefGoogle Scholar
Galperin, B., Sukoriansky, S., Dikovskaya, N., Read, P.L., Yamazaki, Y.H. & Wordsworth, R. 2006 Anisotropic turbulence and zonal jets in rotating flows with a $\beta$ -effect. Nonlinear Proc. Geoph. 13 (1), 8398.10.5194/npg-13-83-2006CrossRefGoogle Scholar
Galperin, B., Young, R.M.B., Sukoriansky, S., Dikovskaya, N., Read, P.L., Lancaster, A.J. & Armstrong, D. 2014 b Cassini observations reveal a regime of zonostrophic macroturbulence on Jupiter. Icarus 229, 295320.10.1016/j.icarus.2013.08.030CrossRefGoogle Scholar
Gulliver, L.T. & Radko, T. 2022 Topographic stabilization of ocean rings. Geophy. Res. Lett. 49 (5), e2021GL097686.10.1029/2021GL097686CrossRefGoogle Scholar
Gulliver, L.T. & Radko, T. 2023 Virtual laboratory experiments on the interaction of a vortex with small-scale topography. Phys. Fluids 35, 021703.10.1063/5.0136723CrossRefGoogle Scholar
He, J.-Y. & Wang, Y. 2024 Multiple states of two-dimensional turbulence above topography. J. Fluid Mech. 994, R2.10.1017/jfm.2024.633CrossRefGoogle Scholar
Holloway, G. 1987 Systematic forcing of large-scale geophysical flows by eddy–topography interaction. J. Fluid Mech. 184, 463476.10.1017/S0022112087002970CrossRefGoogle Scholar
Hopfinger, E.J. & Van Heijst, G.J.F. 1993 Vortices in rotating fluids. Annu. Rev. Fluid Mech. 25 (1), 241289.10.1146/annurev.fl.25.010193.001325CrossRefGoogle Scholar
Hu, Y.-B., Xie, Y.-C. & Xia, K.-Q. 2022 On the centrifugal effect in turbulent rotating thermal convection: onset and heat transport. J. Fluid Mech. 938, R1.10.1017/jfm.2022.190CrossRefGoogle Scholar
Huang, H.-P., Galperin, B. & Sukoriansky, S. 2001 Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere. Phys. Fluids 13 (1), 225240.10.1063/1.1327594CrossRefGoogle Scholar
Khatri, H. 2019 Dynamics of ocean jets over topography. PhD thesis, Imperial College London.Google Scholar
Klymak, J.M. 2018 Nonpropagating form drag and turbulence due to stratified flow over large-scale abyssal hill topography. J. Phys. Oceanogr. 48 (10), 23832395.10.1175/JPO-D-17-0225.1CrossRefGoogle Scholar
Kraichnan, R.H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (7), 14171423.10.1063/1.1762301CrossRefGoogle Scholar
Lacasce, J.H., Escartin, J., Chassignet, E.P. & Xu, X.-B. 2019 Jet instability over smooth, corrugated, and realistic bathymetry. J. Phys. Oceanogr. 49 (2), 585605.10.1175/JPO-D-18-0129.1CrossRefGoogle Scholar
Lacasce, J.H., Palóczy, A. & Trodahl, M. 2024 Vortices over bathymetry. J. Fluid Mech. 979, A32.10.1017/jfm.2023.1084CrossRefGoogle Scholar
Lemasquerier, D. 2021 Experimental and numerical study of Jupiter’s dynamics: jets, vortices and zonostrophic turbulence. PhD thesis, Aix-Marseille Université.Google Scholar
Lemasquerier, D., Favier, B. & Le Bars, M. 2021 Zonal jets at the laboratory scale: hysteresis and Rossby waves resonance. J. Fluid Mech. 910, A18.10.1017/jfm.2020.1000CrossRefGoogle Scholar
Lemasquerier, D., Favier, B. & Le Bars, M. 2023 Zonal jets experiments in the gas giants’ zonostrophic regime. Icarus 390, 115292.10.1016/j.icarus.2022.115292CrossRefGoogle Scholar
Lonner, T.L., Aggarwal, A. & Aurnou, J.M. 2022 Planetary core-style rotating convective flows in paraboloidal laboratory experiments. J. Geophys. Res. Planets 127 (10), e2022JE007356.10.1029/2022JE007356CrossRefGoogle Scholar
Marshall, D.P., Ambaum, M.H.P., Maddison, J.R., Munday, D.R. & Novak, L. 2017 Eddy saturation and frictional control of the Antarctic Circumpolar Current. Geophy. Res. Lett. 44 (1), 286292.10.1002/2016GL071702CrossRefGoogle Scholar
Mashayek, A. 2023 Large-scale impacts of small-scale ocean topography. J. Fluid Mech. 964, F1.10.1017/jfm.2023.305CrossRefGoogle Scholar
Maximenko, N.A., Bang, B. & Sasaki, H. 2005 Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett. 32, L12607.10.1029/2005GL022728CrossRefGoogle Scholar
Merryfield, B. 2005 Ocean mixing in 10 steps. Science 308 (5722), 641642.10.1126/science.1111417CrossRefGoogle ScholarPubMed
Montgomery, M.T. & Smith, R.K. 2017 Recent developments in the fluid dynamics of tropical cyclones. Annu. Rev. Fluid Mech. 49 (1), 541574.10.1146/annurev-fluid-010816-060022CrossRefGoogle Scholar
Naveira Garabato, A.C., Nurser, A.J.G., Scott, R.B. & Goff, J.A. 2013 The impact of small-scale topography on the dynamical balance of the ocean. J. Phys. Oceanogr. 43 (3), 647668.10.1175/JPO-D-12-056.1CrossRefGoogle Scholar
Nikurashin, M. & Ferrari, R. 2010 Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: application to the Southern Ocean. J. Phys. Oceanogr. 40 (9), 20252042.10.1175/2010JPO4315.1CrossRefGoogle Scholar
Nikurashin, M., Vallis, G.K. & Adcroft, A. 2013 Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nat. Geosci. 6 (1), 4851.10.1038/ngeo1657CrossRefGoogle Scholar
Pouquet, A., Marino, R., Mininni, P.D. & Rosenberg, D. 2017 Dual constant-flux energy cascades to both large scales and small scales. Phys. Fluids 29, 111108.10.1063/1.5000730CrossRefGoogle Scholar
Pratt, L.J. 1989 Critical control of zonal jets by bottom topography. J. Mar. Res. 47 (8), 111130.10.1357/002224089785076424CrossRefGoogle Scholar
Radko, T. 2023 a A generalized theory of flow forcing by rough topography. J. Fluid Mech. 961, A24.10.1017/jfm.2023.169CrossRefGoogle Scholar
Radko, T. 2023 b The sandpaper theory of flow–topography interaction for homogeneous shallow-water systems. J. Fluid Mech. 977, A9.10.1017/jfm.2023.945CrossRefGoogle Scholar
Read, P.L., Jacoby, T.N.L., Rogberg, P.H.T., Wordsworth, R.D., Yamazaki, Y.H., Miki-Yamazaki, K., Young, R.M.B., Sommeria, J., Didelle, H. & Viboud, S. 2015 An experimental study of multiple zonal jet formation in rotating, thermally driven convective flows on a topographic beta-plane. Phys. Fluids 27, 085111.10.1063/1.4928697CrossRefGoogle Scholar
Rhines, P. & Bretherton, F. 1973 Topographic Rossby waves in a rough-bottomed ocean. J. Fluid Mech. 61 (3), 583607.10.1017/S002211207300087XCrossRefGoogle Scholar
Rhines, P.B. 1975 Waves and turbulence on a $\beta$ -plane. J. Fluid Mech. 69 (3), 417443.10.1017/S0022112075001504CrossRefGoogle Scholar
Rhines, P.B. & Young, W.R. 1982 Homogenization of potential vorticity in planetary gyres. J. Fluid Mech. 122, 347367.10.1017/S0022112082002250CrossRefGoogle Scholar
Scott, R.B., Goff, J.A., Naveira Garabato, A.C. & Nurser, A.J.G. 2011 Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J. Geophy. Res.: Oceans 116, C09029.10.1029/2011JC007005CrossRefGoogle Scholar
Siegelman, L. & Young, W.R. 2023 Two-dimensional turbulence above topography: vortices and potential vorticity homogenization. P. Natl Acad. Sci. USA 120 (44), e2308018120.10.1073/pnas.2308018120CrossRefGoogle ScholarPubMed
Smith, C.A., Speer, K.G. & Griffiths, R.W. 2014 Multiple zonal jets in a differentially heated rotating annulus. J. Phys. Oceanogr. 44 (9), 22732291.10.1175/JPO-D-13-0255.1CrossRefGoogle Scholar
Srinivasan, K. & Young, W.R. 2012 Zonostrophic instability. J. Atmos. Sci. 69 (5), 16331656.10.1175/JAS-D-11-0200.1CrossRefGoogle Scholar
Stewart, K.D. & Macleod, F. 2022 A laboratory model for a meandering zonal jet. J. Adv. Model. Earth Syst. 14 (7), e2021MS002943.10.1029/2021MS002943CrossRefGoogle Scholar
Sukoriansky, S., Dikovskaya, N. & Galperin, B. 2007 On the arrest of inverse energy cascade and the Rhines scale. J. Atmos. Sci. 64 (9), 33123327.10.1175/JAS4013.1CrossRefGoogle Scholar
Tian, Y.-Y., Weeks, E.R., Ide, K., Urbach, J.S., Baroud, C.N., Ghil, M. & Swinney, H.L. 2001 Experimental and numerical studies of an eastward jet over topography. J. Fluid Mech. 438, 129157.10.1017/S0022112001004372CrossRefGoogle Scholar
Vallis, G.K. & Maltrud, M.E. 1993 Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr. 23 (7), 13461362.10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Vanneste, J. 2000 Enhanced dissipation for quasi-geostrophic motion over small-scale topography. J. Fluid Mech. 407, 105122.10.1017/S0022112099007430CrossRefGoogle Scholar
Vasavada, A.R. & Showman, A.P. 2005 Jovian atmospheric dynamics: an update after Galileo and Cassini . Rep. Prog. Phys. 68 (8), 19351996.10.1088/0034-4885/68/8/R06CrossRefGoogle Scholar
Wang, C.-Y., Gao, Q., Wei, R.-J., Li, T. & Wang, J.-J. 2017 Weighted divergence correction scheme and its fast implementation. Exp. Fluids 58, 114.10.1007/s00348-017-2307-0CrossRefGoogle Scholar
Wang, Q., Ronneberger, O. & Burkhardt, H. 2008 Fourier analysis in polar and spherical coordinates, Tech. Rep. 1 1. IIF-LMB, Computer Science Department, University of Freiburg.Google Scholar
Weeks, E.R., Tian, Y.-D., Urbach, J.S., Ide, K., Swinney, H.L. & Ghil, M. 1997 Transitions between blocked and zonal flows in a rotating annulus with topography. Science 278 (5343), 15981601.10.1126/science.278.5343.1598CrossRefGoogle Scholar
Woollings, T., Barriopedro, D., Methven, J., Son, S.-W., Martius, O., Harvey, B., Sillmann, J., Lupo, A.R. & Seneviratne, S. 2018 Blocking and its response to climate change. Curr. Clim. Change Rep. 4, 287300.10.1007/s40641-018-0108-zCrossRefGoogle ScholarPubMed
Zhang, L.-F. & Xie, J.-H. 2023 The catalytic effect of near-inertial waves on-plane zonal jets. J. Fluid Mech. 962, A33.10.1017/jfm.2023.310CrossRefGoogle Scholar
Zhang, L.-F. & Xie, J.-H. 2024 Spectral condensation and bidirectional energy transfer in quasi-geostrophic turbulence above small-scale topography. Phys. Fluids 36 (8), 086601.10.1063/5.0216337CrossRefGoogle Scholar
Zhang, Y. & Afanasyev, Y.D. 2014 Beta-plane turbulence: experiments with altimetry. Phys. Fluids 26 (2), 026602.10.1063/1.4864339CrossRefGoogle Scholar
Zhang, Y. & Afanasyev, Y.D. 2016 Baroclinic turbulence on the polar $\beta$ -plane in the rotating tank: down to submesoscale. Ocean Model. 107, 151160.10.1016/j.ocemod.2016.09.013CrossRefGoogle Scholar
Zheng, K.-W., Zhang, Z.-W., Zhao, W. & Tian, J.-W. 2023 The impact of rough topography on behaviors of mesoscale eddies as revealed by submesoscale resolving simulations. Ocean Model. 186, 102279.10.1016/j.ocemod.2023.102279CrossRefGoogle Scholar
Zhu, H.-Y., Xie, J.-H. & Xia, K.-Q. 2023 Circulation in quasi-2D turbulence: experimental observation of the area rule and bifractality. Phys. Rev. Lett. 130 (21), 214001.10.1103/PhysRevLett.130.214001CrossRefGoogle ScholarPubMed
Zhu, H.-Y., Xie, J.-H. & Xia, K.-Q. 2024 Flow patterns and energy spectra in forced quasi-two-dimensional turbulence: effect of system size and damping rate. J. Fluid Mech. 996, A39.10.1017/jfm.2024.815CrossRefGoogle Scholar