Hostname: page-component-6bb9c88b65-spzww Total loading time: 0 Render date: 2025-07-25T12:21:00.608Z Has data issue: false hasContentIssue false

Turbulent drag reduction over air-fed hydrophobic surfaces with longitudinal grooves

Published online by Cambridge University Press:  21 July 2025

Shijie Qin
Affiliation:
College of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
Shuai Sun
Affiliation:
China Ship Development and Design Center, Wuhan 430064, PR China
Shuze Tang
Affiliation:
College of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
Zonglong Wang
Affiliation:
Marine Design and Research Institute of China, Shanghai 200011, PR China
Dazhuan Wu*
Affiliation:
College of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
*
Corresponding author: Dazhuan Wu, wudazhuan@zju.edu.cn

Abstract

This study presents an experimental investigation on the drag reduction (DR) over air-fed hydrophobic surfaces (AFHS) with longitudinal grooves in a turbulent boundary layer (TBL). The AFHS, designed with longitudinal grooves and air supplement channels, enables active maintenance and reversible restoration of the plastron in TBL. The shear stress sensor, particle image velocimetry (PIV) and interfacial visualization are applied for simultaneous measurement of the skin friction drag, TBL velocity profiles and plastron coverage. The AFHS demonstrated the ability to control plastron shape and enhance its sustainability with friction Reynolds numbers up to 1723. Drag reductions ranging from 14.8–35.8 % are obtained over the AFHS. At same designed air fraction, the AFHS exhibits higher DR than the conventional hydrophobic surface. By minimizing influences of the degradation of plastron coverage and the shape, the monotonic increase in DR and slip velocity with Reynolds number is confirmed, which corroborates trends from direct numerical simulations. Turbulence statistics measured by PIV reveal an apparent decrease in near-wall viscous shear stress, and corresponding slip velocities both in the viscous sublayer and log-law region. The Reynolds shear stress and streamwise velocity fluctuations over the AFHS are larger than those over a smooth wall, where near-wall vortex cores of the AFHS are found to be shifted 10 % towards the wall. This study presents the first simultaneous experimental quantification of skin friction, plastron coverage and turbulence statistics under sustained plastron conditions in TBL. The results demonstrate the efficacy of the plastron control strategy on hydrophobic surfaces and address a critical gap in validating numerical predictions for turbulent flows in practical applications.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abu Rowin, W. & Ghaemi, S. 2019 Streamwise and spanwise slip over a superhydrophobic surface. J. Fluid Mech. 870, 11271157.10.1017/jfm.2019.225CrossRefGoogle Scholar
Abu Rowin, W. & Ghaemi, S. 2020 Effect of Reynolds number on turbulent channel flow over a superhydrophobic surface. Phys. Fluids 32 (7), 075105.10.1063/5.0012584CrossRefGoogle Scholar
Alamé, K. & Mahesh, K. 2019 Wall-bounded flow over a realistically rough superhydrophobic surface. J. Fluid Mech. 873, 9771019.10.1017/jfm.2019.419CrossRefGoogle Scholar
Aljallis, E., Sarshar, M.A., Datla, R., Sikka, V., Jones, A. & Choi, C.-H. 2013 Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow. Phys. Fluids 25 (2), 025103.10.1063/1.4791602CrossRefGoogle Scholar
Busse, A. & Sandham, N.D. 2012 Influence of an anisotropic slip-length boundary condition on turbulent channel flow. Phys. Fluids 24 (5), 055111.10.1063/1.4719780CrossRefGoogle Scholar
Daniello, R.J., Waterhouse, N.E. & Rothstein, J.P. 2009 Drag reduction in turbulent flows over superhydrophobic surfaces. Phys. Fluids 21 (8), 085103.10.1063/1.3207885CrossRefGoogle Scholar
Davis, A.M. & Lauga, E. 2009 Geometric transition in friction for flow over a bubble mattress. Phys. Fluids 21 (1), 011701.10.1063/1.3067833CrossRefGoogle Scholar
Fukagata, K., Kasagi, N. & Koumoutsakos, P. 2006 A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Phys. Fluids 18 (5), 051703. 10.1063/1.2205307CrossRefGoogle Scholar
Gose, J.W., Golovin, K., Boban, M., Mabry, J.M., Tuteja, A., Perlin, M. & Ceccio, S.L. 2018 Characterization of superhydrophobic surfaces for drag reduction in turbulent flow. J. Fluid Mech. 845, 560580.10.1017/jfm.2018.210CrossRefGoogle Scholar
Lauga, E. & Stone, H.A. 2003 Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489, 5577.10.1017/S0022112003004695CrossRefGoogle Scholar
Lee, C., Choi, C.-H. & Kim, C.-J. 2016 Superhydrophobic drag reduction in laminar flows: a critical review. Exp. Fluids 57 (12), 176.10.1007/s00348-016-2264-zCrossRefGoogle Scholar
Lee, C., Choi, C.-H. & Kim, C.-J.‘CJ.’ 2008 Structured surfaces for a giant liquid slip. Phys. Rev. Lett. 101 (6), 064501.10.1103/PhysRevLett.101.064501CrossRefGoogle ScholarPubMed
Lee, J., Jelly, T.O. & Zaki, T.A. 2015 Effect of Reynolds number on turbulent drag reduction by superhydrophobic surface textures. Flow Turbul. Combust. 95 (2–3), 277300.10.1007/s10494-015-9627-zCrossRefGoogle Scholar
Li, H., Ji, S., Tan, X., Li, Z., Xiang, Y., Lv, P. & Duan, H. 2020 Effect of Reynolds number on drag reduction in turbulent boundary layer flow over liquid–gas interface. Phys. Fluids 32 (12), 122111.10.1063/5.0027727CrossRefGoogle Scholar
Ling, H., Srinivasan, S., Golovin, K., McKinley, G.H., Tuteja, A. & Katz, J. 2016 High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces. J. Fluid Mech. 801, 670703.10.1017/jfm.2016.450CrossRefGoogle Scholar
Liu, X., You, C., Cao, Y., Xu, B., Yang, Y., Li, H., Lv, P., Sun, C. & Duan, H. 2024 Friction drag reduction of Taylor–Couette flow over air-filled microgrooves. J. Fluid Mech. 999, A63.10.1017/jfm.2024.948CrossRefGoogle Scholar
Martell, M.B., Rothstein, J.P. & Perot, J.B. 2010 An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation. Phys. Fluids 22 (6), 065102.10.1063/1.3432514CrossRefGoogle Scholar
Min, T. & Kim, J. 2004 Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16 (7), L55L58.10.1063/1.1755723CrossRefGoogle Scholar
Ou, J., Perot, B. & Rothstein, J.P. 2004 Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids 16 (12), 46354643.10.1063/1.1812011CrossRefGoogle Scholar
Park, H., Choi, C.-H. & Kim, C.-J. 2021 Superhydrophobic drag reduction in turbulent flows: a critical review. Exp. Fluids 62 (11), 229.10.1007/s00348-021-03322-4CrossRefGoogle Scholar
Park, H., Park, H. & Kim, J. 2013 A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow. Phys. Fluids 25 (11), 110815.10.1063/1.4819144CrossRefGoogle Scholar
Park, H., Sun, G. & Kim, C.-J.C. 2014 Superhydrophobic turbulent drag reduction as a function of surface grating parameters. J. Fluid Mech. 747, 722734.10.1017/jfm.2014.151CrossRefGoogle Scholar
Rastegari, A. & Akhavan, R. 2015 On the mechanism of turbulent drag reduction with super-hydrophobic surfaces. J. Fluid Mech. 773 , R4.10.1017/jfm.2015.266CrossRefGoogle Scholar
Rastegari, A. & Akhavan, R. 2018 The common mechanism of turbulent skin-friction drag reduction with superhydrophobic longitudinal microgrooves and riblets. J. Fluid Mech. 838, 68104.10.1017/jfm.2017.865CrossRefGoogle Scholar
Rastegari, A. & Akhavan, R. 2019 On drag reduction scaling and sustainability bounds of superhydrophobic surfaces in high Reynolds number turbulent flows. J. Fluid Mech. 864, 327347.10.1017/jfm.2018.1027CrossRefGoogle Scholar
Rothstein, J.P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42 (1), 89109.10.1146/annurev-fluid-121108-145558CrossRefGoogle Scholar
Safari, A., Saidi, M.H., Salavatidezfouli, S. & Yao, S. 2023 Numerical investigation of the drag reduction effect in turbulent channel flow by superhydrophobic grooved surfaces. Flow 3, E27.10.1017/flo.2023.18CrossRefGoogle Scholar
Schlichting, H. & Gersten, K. 2016 Boundary-Layer Theory. Springer.Google Scholar
Seo, J., Garcia-Mayoral, R. & Mani, A. 2015 Pressure fluctuations and interfacial robustness in turbulent flows over superhydrophobic surfaces. J. Fluid Mech. 783, 448473.10.1017/jfm.2015.573CrossRefGoogle Scholar
Seo, J. & Mani, A. 2016 On the scaling of the slip velocity in turbulent flows over superhydrophobic surfaces. Phys. Fluids 28 (2), 025110.10.1063/1.4941769CrossRefGoogle Scholar
Temprano-Coleto, F., Smith, S.M., Peaudecerf, F.J., Landel, J.R., Gibou, F. & Luzzatto-Fegiz, P. 2023 A single parameter can predict surfactant impairment of superhydrophobic drag reduction. Proc. Natl Acad. Sci. USA 120 (3), e2211092120.10.1073/pnas.2211092120CrossRefGoogle ScholarPubMed
Teo, C.J. & Khoo, B.C. 2010 Flow past superhydrophobic surfaces containing longitudinal grooves: effects of interface curvature. Microfluid Nanofluid 9 (2–3), 499511.10.1007/s10404-010-0566-7CrossRefGoogle Scholar
Tomlinson, S.D., Gibou, F., Luzzatto-Fegiz, P., Temprano-Coleto, F., Jensen, O.E. & LandelJ.R. 2023 Laminar drag reduction in surfactant-contaminated superhydrophobic channels. J. Fluid Mech. 963, A10.10.1017/jfm.2023.264CrossRefGoogle Scholar
Van Buren, T. & Smits, A.J. 2017 Substantial drag reduction in turbulent flow using liquid-infused surfaces. J. Fluid Mech. 827, 448456.10.1017/jfm.2017.503CrossRefGoogle Scholar
Xie, W., Fairhall, C.T. & García-Mayoral, R. 2024 Resolving turbulence and drag over textured surfaces using texture-less simulations: the case of slip/no-slip textures. J. Fluid Mech. 1000, A36.10.1017/jfm.2024.851CrossRefGoogle Scholar
Xu, M., Arihara, B., Tong, H., Yu, N., Ujiie, Y. & Kim, C.-J. 2020 A low-profile wall shear comparator to mount and test surface samples. Exp. Fluids 61 (3), 82.10.1007/s00348-020-2922-zCrossRefGoogle Scholar
Xu, M., Yu, N. & Kim, J. 2021 Superhydrophobic drag reduction in high-speed towing tank. J. Fluid Mech. 908, A6.10.1017/jfm.2020.872CrossRefGoogle Scholar
Yu, N., McClelland, A., del Campo Melchor, F.J., Lee, S.Y. & Lee, J.H. 2023 Sustainability of the plastron on nano-grass-covered micro-trench superhydrophobic surfaces in high-speed flows of open water. J. Fluid Mech. 962, A9.10.1017/jfm.2023.184CrossRefGoogle Scholar
Yu, N., del Campo Melchor, F.J., Li, Z., Jeon, J., Eldredge, J.D. & Kim, C.-J. 2024 Drag reduction on micro-trench and micro-post superhydrophobic surfaces underneath a motorboat on the sea. Flow 4E26.10.1017/flo.2024.25CrossRefGoogle Scholar
Zhang, J., Tian, H., Yao, Z., Hao, P. & Jiang, N. 2015 Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow. Exp. Fluids 56 (9), 113.10.1007/s00348-015-2047-yCrossRefGoogle Scholar
Zhou, J., Adrian, R.J., Balachandar, S. & Kendall, T. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.10.1017/S002211209900467XCrossRefGoogle Scholar