Hostname: page-component-54dcc4c588-54gsr Total loading time: 0 Render date: 2025-10-07T10:43:24.905Z Has data issue: false hasContentIssue false

Temperature characteristics along the centreline in quasi-two-dimensional Rayleigh–Bénard convection filled with liquid metal

Published online by Cambridge University Press:  07 October 2025

Yan-Wu Cao
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
Ming-Zhu Ai
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
Juan-Cheng Yang*
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
Ming-Jiu Ni*
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics and University of Chinese Academy of Sciences, Beijing 100190, PR China
*
Corresponding authors: Juan-Cheng Yang, yangjc@xjtu.edu.cn; Ming-Jiu Ni, mjni@ucas.ac.cn
Corresponding authors: Juan-Cheng Yang, yangjc@xjtu.edu.cn; Ming-Jiu Ni, mjni@ucas.ac.cn

Abstract

In the present study, we observe interesting profiles and fluctuations in a quasi-two-dimensional thermal convection system filled with low-Prandtl-number liquid metal. A high-precision thermistor, which can be precisely controlled to move up and down, is used to measure the temperature distribution along the centreline of a convection cell. As the thermistor probes move away from the heated wall surface, the measured temperatures initially decrease to values below the central temperature of the cell, then recover to the central temperature, indicating an inverse temperature gradient. Furthermore, by analysing the root-mean-square temperature ($\sigma _T (z)$) along the centreline, we find a second peak away from the wall location, which has never been reported before, in addition to the first peak associated with the thermal boundary thickness. This phenomenon is also confirmed by the results of third- and fourth-order moments of temperature. Experimental results, together with insights from previous studies, suggest that in liquid metal, the distinct flow organisation arising from the large thermal diffusivity plays an important role in shaping the observed temperature distribution.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503537.10.1103/RevModPhys.81.503CrossRefGoogle Scholar
Belmonte, A., Tilgner, A. & Libchaber, A. 1994 Temperature and velocity boundary layers in turbulent convection. Phys. Rev. E 50 (1), 269279.10.1103/PhysRevE.50.269CrossRefGoogle ScholarPubMed
Brown, E. & Ahlers, G. 2006 Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 568, 351.10.1017/S0022112006002540CrossRefGoogle Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35 (7), 58.10.1140/epje/i2012-12058-1CrossRefGoogle ScholarPubMed
Chu, T.Y. & Goldstein, R.J. 1973 Turbulent convection in a horizontal layer of water. J. Fluid Mech. 60 (1), 141159.10.1017/S0022112073000091CrossRefGoogle Scholar
Cioni, S., Ciliberto, S. & Sommeria, J. 1997 Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111140.10.1017/S0022112096004491CrossRefGoogle Scholar
Glazier, J.A., Segawa, T., Naert, A. & Sano, M. 1999 Evidence against ‘ultrahard’ thermal turbulence at very high Rayleigh numbers. Nature 398, 307310.10.1038/18626CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.10.1017/S0022112099007545CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2001 Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86 (15), 33163319.10.1103/PhysRevLett.86.3316CrossRefGoogle ScholarPubMed
King, E.M. & Aurnou, J.M. 2015 Magnetostrophic balance as the optimal state for turbulent magnetoconvection. Proc. Natl Acad. Sci. USA 112 (4), 990994.10.1073/pnas.1417741112CrossRefGoogle Scholar
Lui, S.-L. & Xia, K.-Q. 1998 Spatial structure of the thermal boundary layer in turbulent convection. Phys. Rev. E 57 (5), 54945503.10.1103/PhysRevE.57.5494CrossRefGoogle Scholar
Naert, A., Segawa, T. & Sano, M. 1997 High-Reynolds-number thermal turbulence in mercury. Phys. Rev. E 56, 2.10.1103/PhysRevE.56.R1302CrossRefGoogle Scholar
Pandey, A. 2021 Thermal boundary layer structure in low-Prandtl-number turbulent convection. J. Fluid Mech. 910, A13.10.1017/jfm.2020.961CrossRefGoogle Scholar
Pandey, A., Scheel, J.D. & Schumacher, J. 2018 Turbulent superstructures in Rayleigh–Bénard convection. Nat. Commun. 9 (1), 2118.10.1038/s41467-018-04478-0CrossRefGoogle ScholarPubMed
Pandey, A. & Verma, M.K. 2016 Scaling of large-scale quantities in Rayleigh–Bénard convection. Phys. Fluids 28 (9), 095105.10.1063/1.4962307CrossRefGoogle Scholar
Scheel, J.D., Kim, E. & White, K.R. 2012 Thermal and viscous boundary layers in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 711, 281305.10.1017/jfm.2012.392CrossRefGoogle Scholar
Scheel, J.D. & Schumacher, J. 2014 Local boundary layer scales in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 758, 344373.10.1017/jfm.2014.536CrossRefGoogle Scholar
Schindler, F., Kim, N., Vogt, T. & Eckert, S. 2025 Impact of fluid flow on the thermal boundary layer dynamics in turbulent liquid metal Rayleigh–Bénard convection. Intl J. Heat Mass Transfer 247, 127129.10.1016/j.ijheatmasstransfer.2025.127129CrossRefGoogle Scholar
Schumacher, J., Bandaru, V., Pandey, A. & Scheel, J.D. 2016 Transitional boundary layers in low-Prandtl-number convection. Phys. Rev. Fluids 1 (8), 084402.10.1103/PhysRevFluids.1.084402CrossRefGoogle Scholar
Schumacher, J., Götzfried, P. & Scheel, J.D. 2015 Enhanced enstrophy generation for turbulent convection in low-Prandtl-number fluids. Proc. Natl Acad. Sci. USA 112 (31), 95309535.10.1073/pnas.1505111112CrossRefGoogle ScholarPubMed
Segawa, T., Naert, A. & Sano, M. 1998 Matched boundary layers in turbulent Rayleigh–Bénard convection of mercury. Phys. Rev. E 57 (1), 557560.10.1103/PhysRevE.57.557CrossRefGoogle Scholar
Shi, N., Emran, M.S. & Schumacher, J. 2012 Boundary layer structure in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 706, 533.10.1017/jfm.2012.207CrossRefGoogle Scholar
Shishkina, O., Horn, S., Emran, M.S. & Ching, E.S.C. 2017 Mean temperature profiles in turbulent thermal convection. Phys. Rev. Fluids 2 (11), 113502.10.1103/PhysRevFluids.2.113502CrossRefGoogle Scholar
Shraiman, B.I. & Siggia, E.D. 1998 Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42 (6), 36503653.10.1103/PhysRevA.42.3650CrossRefGoogle Scholar
Stevens, R.J.A.M., van der Poel, E.P., Grossmann, S. & Lohse, D. 2013 The unifying theory of scaling in thermal convection: the updated prefactors. J. Fluid Mech. 730, 295308.10.1017/jfm.2013.298CrossRefGoogle Scholar
Sugiyama, K., Ni, R., Stevens, R.J.A.M., Chan, T.S., Zhou, S.-Q., Xi, H.-D., Sun, C., Grossmann, S., Xia, K.-Q. & Lohse, D. 2010 Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105 (3), 034503.10.1103/PhysRevLett.105.034503CrossRefGoogle ScholarPubMed
Takeshita, T., Segawa, T., Glazier, J.A. & Sano, M. 1996 Thermal turbulence in mercury. Phys. Rev. Lett. 76 (9), 14651468.10.1103/PhysRevLett.76.1465CrossRefGoogle ScholarPubMed
Verma, M.K., Kumar, A. & Pandey, A. 2017 Phenomenology of buoyancy-driven turbulence: recent results. New J. Phys. 19 (2), 025012.10.1088/1367-2630/aa5d63CrossRefGoogle Scholar
Wagner, S., Shishkina, O. & Wagner, C. 2012 Boundary layers and wind in cylindrical Rayleigh–Bénard cells. J. Fluid Mech. 697, 336366.10.1017/jfm.2012.69CrossRefGoogle Scholar
Wan, Z.-H., Wei, P., Verzicco, R., Lohse, D., Ahlers, G. & Stevens, R.J.A.M. 2019 Effect of sidewall on heat transfer and flow structure in Rayleigh–Bénard convection. J. Fluid Mech. 881, 218243.10.1017/jfm.2019.770CrossRefGoogle Scholar
Wang, J. & Xia, K.-Q. 2003 Spatial variations of the mean and statistical quantities in the thermal boundary layers of turbulent convection. Eur. Phys. J. B 32 (1), 127136.10.1140/epjb/e2003-00081-yCrossRefGoogle Scholar
Xi, H.-D., Zhou, Q. & Xia, K.-Q. 2006 Azimuthal motion of the mean wind in turbulent thermal convection. Phys. Rev. E 73 (5), 056312.10.1103/PhysRevE.73.056312CrossRefGoogle ScholarPubMed
Xi, H.-D., Zhou, S.-Q., Zhou, Q., Chan, T.-S. & Xia, K.-Q. 2009 Origin of the temperature oscillation in turbulent thermal convection. Phys. Rev. Lett. 102 (4), 044503.10.1103/PhysRevLett.102.044503CrossRefGoogle ScholarPubMed
Zhou, Q., Li, C.-M., Lu, Z.-M. & Liu, Y.-L. 2011 Experimental investigation of longitudinal spacetime correlations of the velocity field in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 683, 94111.10.1017/jfm.2011.249CrossRefGoogle Scholar
Zhou, Q., Sun, C. & Xia, K.-Q. 2007 Morphological evolution of thermal plumes in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98 (7), 074501.10.1103/PhysRevLett.98.074501CrossRefGoogle ScholarPubMed
Zhou, Q., Sun, C. & Xia, K.-Q. 2008 Experimental investigation of homogeneity, isotropy, and circulation of the velocity field in buoyancy-driven turbulence. J. Fluid Mech. 598, 361372.10.1017/S0022112008000189CrossRefGoogle Scholar
Zhou, Q., Xi, H.-D., Zhou, S.-Q., Sun, C. & Xia, K.-Q. 2009 Oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection: the sloshing mode and its relationship with the torsional mode. J. Fluid Mech. 630, 367390.10.1017/S0022112009006764CrossRefGoogle Scholar
Zhou, Q. & Xia, K.-Q. 2013 Thermal boundary layer structure in turbulent Rayleigh–Bénard convection in a rectangular cell. J. Fluid Mech. 721, 199224.10.1017/jfm.2013.73CrossRefGoogle Scholar
Zhou, S.-Q. & Xia, K.-Q. 2001 Spatially correlated temperature fluctuations in turbulent convection. Phys. Rev. E 63 (4), 046308.10.1103/PhysRevE.63.046308CrossRefGoogle ScholarPubMed
Zhou, S.-Q. & Xia, K.-Q. 2002 Plume statistics in thermal turbulence: mixing of an active scalar. Phys. Rev. Lett. 89 (18), 184502.10.1103/PhysRevLett.89.184502CrossRefGoogle ScholarPubMed
Zürner, T., Schindler, F., Vogt, T., Eckert, S. & Schumacher, J. 2019 Combined measurement of velocity and temperature in liquid metal convection. J. Fluid Mech. 876, 11081128.10.1017/jfm.2019.556CrossRefGoogle Scholar
Zürner, T., Schindler, F., Vogt, T., Eckert, S. & Schumacher, J. 2020 Flow regimes of Rayleigh–Bénard convection in a vertical magnetic field. J. Fluid Mech. 894, A21.10.1017/jfm.2020.264CrossRefGoogle Scholar