Hostname: page-component-65b85459fc-997vn Total loading time: 0 Render date: 2025-10-15T06:08:03.723Z Has data issue: false hasContentIssue false

Plate induced tones in installed supersonic jets

Published online by Cambridge University Press:  13 October 2025

Hasan Kamliya Jawahar
Affiliation:
School of Civil, Aerospace and Design Engineering, University of Bristol, Bristol BS8 1TR, UK
Kabilan Baskaran*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
*
Corresponding author: Kabilan Baskaran, kabilan@iitism.ac.in

Abstract

An experimental investigation is conducted to examine the tonal noise generation and flow structures of under-expanded jets interacting with a flat plate. The study combines surface pressure, far-field noise and time-resolved Schlieren visualisations to analyse jet dynamics across a range of isentropic Mach numbers (1.1–1.44) and jet-to-plate distances ($H/D$ = 1, 1.5 and 2.5). The results reveal a distinctly non-monotonic relationship between plate height and the amplitude of screech and plate-induced tones. This behaviour is governed by the constructive and destructive interference between the direct acoustic feedback waves of the jet and those reflected from the plate surface. This interference dictates whether the inherent screech mechanism is suppressed or a new plate-induced tone is amplified. Dynamic mode decomposition and wavenumber-spectral analysis reveal that the plate interaction disrupts the balance between downstream-propagating Kelvin–Helmholtz instabilities and upstream-travelling acoustic waves, fundamentally altering the jet’s resonant feedback loops. A key contribution of this work is the establishment of a direct link between flow dynamics and acoustics through advanced statistical analysis. It is shown that the plate installation asymmetrically amplifies the energy of coherent structures within the jet’s lower shear layer. Crucially, the energy content of these dominant shear-layer structures is found to be the primary driver of the far-field tonal noise magnitude. These findings provide a deeper understanding of the complex coupling between flow and acoustics in installed supersonic jets and offer refined guidance for the development of noise mitigation strategies.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahuja, K., McCaulley, J. & Tam, C. 1989 Noise and instability waves in supersonic jets in the proximity of flat and cylindrical walls. In 12th Aeroacoustic Conference, San Antonio, TX. AIAA Paper 1989-1136. AIAA.Google Scholar
André, B., Castelain, T. & Bailly, C. 2013 Broadband shock-associated noise in screeching and non-screeching underexpanded supersonic jets. AIAA J. 51 (3), 665673.10.2514/1.J052058CrossRefGoogle Scholar
Baier, F., Karnam, A. & Gutmark, E. 2020 Cold flow measurements of supersonic low aspect ratio jet-surface interactions. Flow Turbul. Combust. 105 (1), 130.10.1007/s10494-019-00098-wCrossRefGoogle Scholar
Baskaran, K. & Srinivasan, K. 2021 Aeroacoustic modal analysis of underexpanded pipe jets with and without an upstream cavity. Phys. Fluids 33 (1), 016108.10.1063/5.0035133CrossRefGoogle Scholar
Bridges, J. & Brown, C. 2004 Parametric testing of chevrons on single flow hot jets. In 10th AIAA/CEAS Aeroacoustics Conference, Manchester, United Kingdom. AIAA Paper 2004-2824. AIAA.Google Scholar
Brown, C. 2012 Jet-surface interaction test: far-field noise results. In Turbo Expo: Power for Land, Sea, and Air, vol. 44670, pp. 357369. American Society of Mechanical Engineers.Google Scholar
Brown, C.A. 2013 Jet-surface interaction test: far-field noise results. J. Engng Gas Turbines Power 135 (7), 071201.10.1115/1.4023605CrossRefGoogle Scholar
Brown, C.A., Clem, M.M. & Fagan, A.F. 2015 Investigation of broadband shock noise from a jet near a planar surface. J. Aircraft 52 (1), 266273.10.2514/1.C032695CrossRefGoogle Scholar
Brown, W. & Ahuja, K. 1984 Jet and wing/flap interaction noise. In 9th Aeroacoustics Conference, Williamsburg, VA. AIAA Paper 1984-2362. AIAA.Google Scholar
Camussi, R., Ahmad, M.K., Meloni, S., de Paola, E. & Di Marco, A. 2022 Experimental analysis of an under-expanded jet interacting with a tangential flat plate: flow visualizations and wall pressure statistics. Exp. Therm. Fluid Sci. 130, 110474.10.1016/j.expthermflusci.2021.110474CrossRefGoogle Scholar
Casalino, D. & Hazir, A. 2014 Lattice Boltzmann based aeroacoustic simulation of turbofan noise installation effects. In Proceedings of the 23rd International Congress on Sound and Vibration, Athens, Greece, pp. 18. International Institute of Acoustics and Vibration (IIAV).Google Scholar
Cavalieri, A.V.G., Jordan, P., Wolf, W.R. & Gervais, Y. 2014 Scattering of wavepackets by a flat plate in the vicinity of a turbulent jet. J. Sound Vib. 333 (24), 65166531.10.1016/j.jsv.2014.07.029CrossRefGoogle Scholar
Clem, M., Brown, C. & Fagan, A. 2013 Background oriented Schlieren implementation in a jet-surface interaction test. In 51st AIAA Aerospace Sciences Meeting, Grapevine, TX. AIAA Paper 2013-0038. AIAA.Google Scholar
Dawson, M.F., Lawrence, J.L.T., Self, R.H. & Kingan, M.J. 2020 Validation of a jet–surface interaction noise model in flight. AIAA J. 58 (3), 11301139.10.2514/1.J058639CrossRefGoogle Scholar
Di Marco, A., Mancinelli, M. & Camussi, R. 2015 Pressure and velocity measurements of an incompressible moderate Reynolds number jet interacting with a tangential flat plate. J. Fluid Mech. 770, 247272.10.1017/jfm.2015.149CrossRefGoogle Scholar
Donoho, D.L. & Gavish, M. 2013 The optimal hard threshold for singular values is 4. arXiv preprint arXiv:1305.5870.Google Scholar
Edgington-Mitchell, D. 2019 Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets–a review. Intl J. Aeroacoust. 18 (2–3), 118188.10.1177/1475472X19834521CrossRefGoogle Scholar
Edgington-Mitchell, D., Jaunet, V., Jordan, P., Towne, A., Soria, J. & Honnery, D. 2018 Upstream-travelling acoustic jet modes as a closure mechanism for screech. J. Fluid Mech. 855, R1.10.1017/jfm.2018.642CrossRefGoogle Scholar
Edgington-Mitchell, D., Li, X., Liu, N., He, F., Wong, T.Y., Mackenzie, J. & Nogueira, P. 2022 A unifying theory of jet screech. J. Fluid Mech. 945, A8.10.1017/jfm.2022.549CrossRefGoogle Scholar
Edgington-Mitchell, D., Oberleithner, K., Honnery, D.R. & Soria, J. 2014 Coherent structure and sound production in the helical mode of a screeching axisymmetric jet. J. Fluid Mech. 748, 822847.10.1017/jfm.2014.173CrossRefGoogle Scholar
Edgington-Mitchell, D., Wang, T., Nogueira, P., Schmidt, O., Jaunet, V., Duke, D., Jordan, P. & Towne, A. 2021 Waves in screeching jets. J. Fluid Mech. 913, A7.10.1017/jfm.2020.1175CrossRefGoogle Scholar
Fenyvesi, B., Kriegseis, J. & Horváth, C. 2022 An automated method for the identification of interaction tone noise sources on the beamforming maps of counter-rotating rotors. Phys. Fluids 34 (4), 047105.10.1063/5.0083634CrossRefGoogle Scholar
Fernando, J.N., Kriegseis, J. & Rival, D.E. 2014 Modal analysis of confined square and rectangular cavity flows. Intl J. Heat Fluid Flow 47, 123134.10.1016/j.ijheatfluidflow.2014.03.003CrossRefGoogle Scholar
Ffowcs Williams, J.E. & Hall, L.H. 1970 Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane. J. Fluid Mech. 40, 657670.10.1017/S0022112070000368CrossRefGoogle Scholar
Gao, J.H. & Li, X.D. 2010 A multi-mode screech frequency prediction formula for circular supersonic jets. J. Acoust. Soc. Am. 127 (3), 12511257.10.1121/1.3291001CrossRefGoogle ScholarPubMed
Head, R. & Fisher, M. 1976 Jet/surface interaction noise-analysis of farfield low frequency augmentations of jet noise due to the presence of a solid shield. In 3rd AIAA Aeroacoustics Conference, Palo Alto, CA. AIAA Paper 76-502. AIAA.Google Scholar
Ibrahim, M.K., Sawai, T., Obase, K., Mori, K. & Nakamura, Y. 2009 Experimental investigation of screech-tone characteristics of jet interaction with a flat plate. AIAA J. 47 (9), 20312038.10.2514/1.37077CrossRefGoogle Scholar
Jawahar, H.K., Karabasov, S.A. & Azarpeyvand, M. 2023 Jet installation noise reduction using porous treatments. J. Sound Vib. 545, 117406.10.1016/j.jsv.2022.117406CrossRefGoogle Scholar
Jeun, J., Wu, G.J. & Lele, S.K. 2024 A closure mechanism for screech coupling in rectangular twin jets. J. Fluid Mech. 987, A5.10.1017/jfm.2024.376CrossRefGoogle Scholar
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45 (1), 173195.10.1146/annurev-fluid-011212-140756CrossRefGoogle Scholar
Jordan, P., Jaunet, V., Towne, A., Cavalieri, A.V.G., Colonius, T., Schmidt, O. & Agarwal, A. 2018 Jet–flap interaction tones. J. Fluid Mech. 853, 333358.10.1017/jfm.2018.566CrossRefGoogle Scholar
Kamliya Jawahar, H. & Azarpeyvand, M. 2021 Trailing-edge treatments for jet-installation noise reduction. In AIAA Aviation 2021 Forum, p. 2185.Google Scholar
Kamliya Jawahar, H. & Azarpeyvand, M. 2022 On investigating the hydrodynamic field for jets with and without installation effects. In AIAA Aviation 2022 Forum.10.2514/6.2022-2907CrossRefGoogle Scholar
Kamliya Jawahar, H. & Azarpeyvand, M. 2024 A comparative study of scarfed nozzle for jet-installation noise reduction. Flow Turbul. Combust. 113, 126.10.1007/s10494-023-00518-yCrossRefGoogle Scholar
Kamliya Jawahar, H., Baskaran, K. & Azarpeyvand, M. 2021 a Unsteady characteristics of mode oscillation for screeching jets. In AIAA Aviation 2021 Forum, p. 2279.Google Scholar
Kamliya Jawahar, H., Markesteijn, A.P., Karabasov, S.A. & Azarpeyvand, M. 2021 b Effects of chevrons on jet-installation noise. AIAA Aviation 2021 Forum, p. 2184.Google Scholar
Kamliya Jawahar, H., Meloni, S., Camussi, R. & Azarpeyvand, M. 2021 c Experimental investigation on the jet noise sources for chevron nozzles in under-expanded condition. In AIAA Aviation 2021 Forum, p. 2181.Google Scholar
Kriegseis, J., Dehler, T., Gnirß, M. & Tropea, C. 2010 Common-base proper orthogonal decomposition as a means of quantitative data comparison. Meas. Sci. Technol. 21 (8), 085403.10.1088/0957-0233/21/8/085403CrossRefGoogle Scholar
Lawrence, J., Azarpeyvand, M. & Self, R. 2011 Interaction between a flat plate and a circular subsonic jet. In 17th AIAA/CEAS Aeroacoustics Conference, Portland, OR. AIAA Paper 2011-2745. AIAA.Google Scholar
Li, X., Liu, N., Hao, P., Zhang, X. & He, F. 2021 Screech feedback loop and mode staging process of axisymmetric underexpanded jets. Exp. Therm. Fluid Sci. 122, 110323.10.1016/j.expthermflusci.2020.110323CrossRefGoogle Scholar
Li, X.-R., Zhang, X.-W., Hao, P.-F. & He, F. 2020 Acoustic feedback loops for screech tones of underexpanded free round jets at different modes. J. Fluid Mech. 902, A17.10.1017/jfm.2020.436CrossRefGoogle Scholar
Lyu, B., Dowling, A.P. & Naqavi, I. 2017 Prediction of installed jet noise. J. Fluid Mech. 811, 234268.10.1017/jfm.2016.747CrossRefGoogle Scholar
Lyu, B. & Dowling, A.P. 2019 An experimental study of the effects of lobed nozzles on installed jet noise. Exp. Fluids 60 (12), 112.10.1007/s00348-019-2819-xCrossRefGoogle Scholar
Mancinelli, M., Meloni, S. & Camussi, R. 2024 Jet-plate interaction in a supersonic screeching jet. In 30th AIAA/CEAS Aeroacoustics Conference (2024), p. 3145. AIAA.Google Scholar
Mayer, Y.D., Jawahar, H.K., Szőke, M., Ali, S.A.S. & Azarpeyvand, M. 2019 Design and performance of an aeroacoustic wind tunnel facility at the University of Bristol. Appl. Acoust. 155, 358370.10.1016/j.apacoust.2019.06.005CrossRefGoogle Scholar
Meloni, S., Centracchio, F., de Paola, E., Camussi, R. & Iemma, U. 2023 Experimental characterisation and data-driven modelling of unsteady wall pressure fields induced by a supersonic jet over a tangential flat plate. J. Fluid Mech. 958, A27.10.1017/jfm.2023.84CrossRefGoogle Scholar
Meloni, S., Proença, A.R., Lawrence, J.L.T. & Camussi, R. 2021 An experimental investigation into model-scale installed jet–pylon–wing noise. J. Fluid Mech. 929, A27.10.1017/jfm.2021.831CrossRefGoogle Scholar
Nakkala, H.R. & Srinivasan, K. 2023 Aeroacoustic characteristics of supersonic offset jets. Intl J. Aeroacoust. 22 (1-2), 522.10.1177/1475472X221150170CrossRefGoogle Scholar
Nogueira, P.A.S., Cavalieri, A.V.G., Martini, E., Towne, A., Jordan, P. & Edgington-Mitchell, D. 2024 Guided-jet waves. J. Fluid Mech. 999, A47.10.1017/jfm.2024.797CrossRefGoogle Scholar
Obase, K. & Nakamura, Y. 2004 Aerodynamic and aeroacoustic interactions of a high-speed jet with a flat plate. In 2nd AIAA Flow Control Conference, Portland, OR. AIAA Paper 2004-2404. AIAA.Google Scholar
Pack, DC. 1950 A note on Prandtl’s formula for the wave-length of a supersonic gas jet. Q. J. Mech. Appl. Maths 3 (2), 173181.10.1093/qjmam/3.2.173CrossRefGoogle Scholar
Panda, J. 1998 Shock oscillation in underexpanded screeching jets. J. Fluid Mech. 363, 173198.10.1017/S0022112098008842CrossRefGoogle Scholar
Panda, J. 1999 An experimental investigation of screech noise generation. J. Fluid Mech. 378, 7196.10.1017/S0022112098003383CrossRefGoogle Scholar
Panda, J., Raman, G., Zaman, K.B.M.Q., Panda, J., Raman, G. & Zaman, K. 1997 Underexpanded screeching jets from circular, rectangular and elliptic nozzles. In 3rd AIAA/CEAS Aeroacoustics Conference, Atlanta, GA. AIAA Paper 97-1601. AIAA.Google Scholar
Papamoschou, D. 2010 Prediction of jet noise shielding. In 48th AIAA Aerospace Sciences Meeting, Orlando, FL. AIAA Paper 2010-653. AIAA.Google Scholar
Podboy, G.G. 2012 Jet-Surface Interaction Test: Phased Array Noise Source Localization Results, vol. 44670. American Society of Mechanical Engineers.Google Scholar
Powell, A. 1953 On the mechanism of choked jet noise. Proc. Phys. Soc. B 66 (12), 1039.10.1088/0370-1301/66/12/306CrossRefGoogle Scholar
Powell, A., Umeda, Y. & Ishii, R. 1992 Observations of the oscillation modes of choked circular jets. J. Acoust. Soc. Am. 92 (5), 28232836.10.1121/1.404398CrossRefGoogle Scholar
Proença, A., Lawrence, J. & Self, R. 2020 Investigation into the turbulence statistics of installed jets using hot-wire anemometry. Exp. Fluids 61 (10), 119.10.1007/s00348-020-03054-xCrossRefGoogle Scholar
Raman, G. 1997 Cessation of screech in underexpanded jets. J. Fluid Mech. 336, 6990.10.1017/S002211209600451XCrossRefGoogle Scholar
Raman, G. 1999 Supersonic jet screech: half-century from Powell to the present. J. Sound Vib. 225 (3), 543571.10.1006/jsvi.1999.2181CrossRefGoogle Scholar
Rego, L., Avallone, F., Ragni, D. & Casalino, D. 2020 Jet-installation noise and near-field characteristics of jet–surface interaction. J. Fluid Mech. 895, A2.10.1017/jfm.2020.294CrossRefGoogle Scholar
Rego, L., Avallone, F., Ragni, D. & Casalino, D. 2022 On the mechanisms of jet-installation noise reduction with flow-permeable trailing edges. J. Sound Vib. 520, 116582.10.1016/j.jsv.2021.116582CrossRefGoogle Scholar
Schmid, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.10.1017/S0022112010001217CrossRefGoogle Scholar
Schmid, P.J., Li, L., Juniper, M.P. & Pust, O. 2011 Applications of the dynamic mode decomposition. Theor. Comput. Fluid Dyn. 25, 249259.10.1007/s00162-010-0203-9CrossRefGoogle Scholar
Seiner, J.M., Manning, J.C. & Jansen, B. 1987 Supersonic jet plume interaction with a flat plate. Tech. Rep. SAE Technical Paper.10.4271/872361CrossRefGoogle Scholar
Seivwright, D.&Shreeve, R. 1997 Flat plate in a highly-underexpanded sonic jet. In 35th Aerospace Sciences Meeting and Exhibit, Reno, NV. AIAA Paper 97-0066. AIAA.10.2514/6.1997-66CrossRefGoogle Scholar
Semlitsch, B., Malla, B., Gutmark, E.J. & Mihăescu, M. 2020 The generation mechanism of higher screech tone harmonics in supersonic jets. J. Fluid Mech. 893, A9.10.1017/jfm.2020.233CrossRefGoogle Scholar
Sinha, A., Rodríguez, D., Brès, G.A. & Colonius, T. 2014 Wavepacket models for supersonic jet noise. J. Fluid Mech. 742, 7195.10.1017/jfm.2013.660CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Math. 45 (3), 561571.10.1090/qam/910462CrossRefGoogle Scholar
Suzuki, T. & Colonius, T. 2006 Instability waves in a subsonic round jet detected using a near-field phased microphone array. J. Fluid Mech. 565, 197226.10.1017/S0022112006001613CrossRefGoogle Scholar
Tam, C. 1995 Supersonic jet noise. Annu. Rev. Fluid Mech. 27, 1743.10.1146/annurev.fl.27.010195.000313CrossRefGoogle Scholar
Tam, C.K.W. & Chandramouli, S. 2020 Jet-plate interaction tones relevant to over-the-wing engine mount concept. J. Sound Vib. 486, 115378.10.1016/j.jsv.2020.115378CrossRefGoogle Scholar
Tam, C.K.W. & Hu, F.Q. 1989 On the three families of instability waves of high-speed jets. J. Fluid Mech. 201, 447483.10.1017/S002211208900100XCrossRefGoogle Scholar
Tinney, C.E. & Jordan, P. 2008 The near pressure field of co-axial subsonic jets. J. Fluid Mech. 611, 175204.10.1017/S0022112008001833CrossRefGoogle Scholar
Towne, A., Cavalieri, A.V.G., Jordan, P., Colonius, T., Schmidt, O., Jaunet, V. & Brès, G.A. 2017 Acoustic resonance in the potential core of subsonic jets. J. Fluid Mech. 825, 11131152.10.1017/jfm.2017.346CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.10.1017/jfm.2018.283CrossRefGoogle Scholar
Westley, R. & Woolley, J.H. 1969 The near field sound pressures of a choked jet during a screech cycle. In AGARD Conference Proceedings No. 42 on Aircraft Engine Noise and Sonic Boom (Paper No. 23). AGARD (the Advisory Group for Aerospace Research and Development).Google Scholar
Williams, J.E.F. & Hall, L.H. 1970 Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane. J. Fluid Mech. 40 (4), 657670.10.1017/S0022112070000368CrossRefGoogle Scholar
Wlezien, R. 1989 Near-field acoustic environment of a supersonic plume adjacent to a wall. In 12th Aeroacoustic Conference, San Antonio, TX. AIAA Paper 1989-1137. AIAA.Google Scholar
Wu, G.J., Lele, S.K. & Jeun, J. 2020 Coherence and feedback in supersonic rectangular jet screech. Annu. Res. Briefs 17, 133144.Google Scholar
Zaman, K.B.M.Q., Fagan, A.F., Bridges, J.E. & Brown, C.A. 2015 An experimental investigation of resonant interaction of a rectangular jet with a flat plate. J. Fluid Mech. 779, 751775.10.1017/jfm.2015.453CrossRefGoogle Scholar
Supplementary material: File

Kamliya Jawahar and Baskaran supplementary movie

Instantaneous Schlieren visualization of an isolated jet and an installed jet at H/D = 1 and M = 1.44.
Download Kamliya Jawahar and Baskaran supplementary movie(File)
File 11.9 MB