No CrossRef data available.
Published online by Cambridge University Press: 30 May 2025
The dynamics of flow over an isolated surface-mounted hemisphere are investigated with tomographic particle image velocimetry (PIV). The 10 mm height hemisphere is completely submerged in the laminar boundary layer, and the height-based Reynolds number is 1530. The evolution of typical coherent structures around the hemisphere are discussed, with emphasis on the hairpin vortex (HV) and side hairpin vortex (SHV) formed periodically in the middle and both sides of the wake, respectively. Proper orthogonal decomposition (POD) analysis is conducted to explore the vortex dynamics. The shedding processes of the HV and SHV are each dominated by two different POD modes with correspondingly different characteristic frequencies, which has not been reported before in the literature. Furthermore, the coexistence of symmetric and asymmetric shedding patterns is explored for the first time in the shedding process of the HV at such a low Reynolds number. The asymmetric behaviour is controlled by the asymmetric shedding POD mode, whose dominant frequency is exactly half of the symmetric mode. In addition, SHVs on both sides of the wake are throughout formed and shed alternately, and the streamwise extensions of a horseshoe vortex also oscillate asymmetrically, which are responsible for the formation of the asymmetric shedding pattern of the HV. These findings help to fill the gaps in the related field and contribute to studies on the vortex dynamics of the flow over a hemisphere.