Hostname: page-component-6bb9c88b65-wr9vw Total loading time: 0 Render date: 2025-07-27T07:14:07.825Z Has data issue: false hasContentIssue false

Initial perturbation dependence on Richtmyer–Meshkov instability with reshock

Published online by Cambridge University Press:  21 July 2025

Yumeng Zhang
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, School of Engineering Science, University of Science and Technology of China, Hefei 230026, PR China
Yong Zhao
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, School of Engineering Science, University of Science and Technology of China, Hefei 230026, PR China
Zhangbo Zhou
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, School of Engineering Science, University of Science and Technology of China, Hefei 230026, PR China
Juchun Ding*
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, School of Engineering Science, University of Science and Technology of China, Hefei 230026, PR China Laoshan Laboratory, Qingdao 266237, PR China
Xisheng Luo*
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, School of Engineering Science, University of Science and Technology of China, Hefei 230026, PR China
*
Corresponding authors: Xisheng Luo, xluo@ustc.edu.cn; Juchun Ding, djc@ustc.edu.cn
Corresponding authors: Xisheng Luo, xluo@ustc.edu.cn; Juchun Ding, djc@ustc.edu.cn

Abstract

The Richtmyer–Meshkov instability at gas interfaces with controllable initial perturbation spectra under reshock conditions is investigated both experimentally and theoretically. A soap-film method is adopted to generate well-defined single-, dual- and triple-mode air/SF$_6$ interfaces. By inserting an acrylic block into the test section, a reflected shock with controllable reshock timing is created. The results reveal a complex relationship between the post-reshock perturbation growth rate and the pre-reshock interface morphology. For single-mode interfaces, the post-reshock growth rate exhibits a strong dependence on pre-reshock conditions. In contrast, for multi-mode interfaces, this dependence weakens significantly due to mode-coupling effects. It is found that, following reshock, each fundamental mode develops independently and later is significantly influenced by mode-coupling effects. Based on this finding, we propose an empirical model that matches the initial linear growth rate and the asymptotic growth rate, accurately predicting the evolution of fundamental modes from early to late stages across all three configurations. Furthermore, a theoretical formula is derived, linking the empirical coefficient in the model of Charakhch’An (2020 J. Appl. Mech. Tech. Phys. vol. 41, no. 1, pp. 23–31) to the initial perturbation. This provides a unified framework to explain the varying dependence of post-reshock growth rates on pre-reshock morphology observed in previous experiments.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alon, U., Hecht, J., Ofer, D. & Shvarts, D. 1995 Power laws and similarity of Rayleigh–Taylor and Richtmyer–Meshkov mixing fronts. Phys. Rev. Lett. 74 (4), 534537.10.1103/PhysRevLett.74.534CrossRefGoogle ScholarPubMed
Aure, R. & Jacobs, J.W. 2008 Particle image velocimetry study of the shock-induced single mode Richtmyer–Meskov instability. Shock Waves 18 (3), 161167.10.1007/s00193-008-0154-xCrossRefGoogle Scholar
Balakumar, B.J., Orlicz, G.C., Ristorcelli, J.R., Balasubramanian, S., Prestridge, K.P. & Tomkins, C.D. 2012 Turbulent mixing in a Richtmyer–Meshkov fluid layer after reshock: velocity and density statistics. J. Fluid Mech. 696, 6793.10.1017/jfm.2012.8CrossRefGoogle Scholar
Balakumar, B.J., Orlicz, G.C., Tomkins, C.D. & Prestridge, K.P. 2008 a Dependence of growth patterns and mixing width on initial conditions in Richtmyer–Meshkov unstable fluid layers. Phys. Scr. T132, 014013.10.1088/0031-8949/2008/T132/014013CrossRefGoogle Scholar
Balakumar, B.J., Orlicz, G.C., Tomkins, C.D. & Prestridge, K.P. 2008 b Simultaneous particle-image velocimetry–planar laser-induced fluorescence measurements of Richtmyer–Meshkov instability growth in a gas curtain with and without reshock. Phys. Fluids 20 (12), 124103.10.1063/1.3041705CrossRefGoogle Scholar
Balasubramanian, S., Orlicz, G.C., Prestridge, K.P. & Balakumar, B.J. 2012 Experimental study of initial condition dependence on Richtmyer–Meshkov instability in the presence of reshock. Phys. Fluids 24 (3), 034103.10.1063/1.3693152CrossRefGoogle Scholar
Bin, Y., Xiao, M., Shi, Y., Zhang, Y. & Chen, S. 2021 A new idea to predict reshocked Richtmyer–Meshkov mixing: constrained large-eddy simulation. J. Fluid Mech. 918, R1.10.1017/jfm.2021.332CrossRefGoogle Scholar
Brouillette, M. 2002 The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34 (1), 445468.10.1146/annurev.fluid.34.090101.162238CrossRefGoogle Scholar
Buttler, W.T. 2012 Unstable Richtmyer–Meshkov growth of solid and liquid metals in vacuum. J. Fluid Mech. 703, 6084.10.1017/jfm.2012.190CrossRefGoogle Scholar
Cao, Q., Chen, C., Wang, H., Zhai, Z. & Luo, X. 2024 Interface evolution induced by two successive shocks under diverse reshock conditions. J. Fluid Mech. 999, A31.10.1017/jfm.2024.957CrossRefGoogle Scholar
Charakhch’An, A.A. 2000 Richtmyer–Meshkov instability of an interface between two media due to passage of two successive shocks. J. Appl. Mech. Tech. Phys. 41 (1), 2331.10.1007/BF02465232CrossRefGoogle Scholar
Chen, C., Wang, H., Zhai, Z. & Luo, X. 2024 Mode coupling between two different interfaces of a gas layer subject to a shock. J. Fluid Mech. 984, A38.10.1017/jfm.2024.232CrossRefGoogle Scholar
Cloutman, L.D. & Wehner, M.F. 1992 Numerical simulation of Richtmyer–Meshkov instabilities. Phys. Fluids A 4 (8), 18211830.10.1063/1.858403CrossRefGoogle Scholar
Cohen, R.D. 1991 Shattering of a liquid drop due to impact. Proc. R. Soc. Lond. A: Math. Phys. Sci. 435 (1895), 483503.Google Scholar
Dimonte, G. & Ramaprabhu, P. 2010 Simulations and model of the nonlinear Richtmyer–Meshkov instability. Phys. Fluids 22 (1), 014104.10.1063/1.3276269CrossRefGoogle Scholar
Ding, J., Si, T., Chen, M., Zhai, Z., Lu, X. & Luo, X. 2017 a On the interaction of a planar shock with a three-dimensional light gas cylinder. J.Fluid Mech. 828, 289317.10.1017/jfm.2017.528CrossRefGoogle Scholar
Ding, J., Si, T., Yang, J., Lu, X., Zhai, Z. & Luo, X. 2017 b Measurement of a Richtmyer–Meshkov instability at an air-SF $_6$ interface in a semiannular shock tube. Phys. Rev. Lett. 119 (1), 014501.10.1103/PhysRevLett.119.014501CrossRefGoogle Scholar
Ferguson, K. & Jacobs, J.W. 2024 The influence of the shock-to-reshock time on the Richtmyer–Meshkov instability in reshock. J. Fluid Mech. 999, A68.10.1017/jfm.2024.795CrossRefGoogle Scholar
Gibson, C. 1968 Fine structure of scalar fields mixed by turbulence. II. Spectral theory. Phys. Fluids 11 (11), 23162327.10.1063/1.1691821CrossRefGoogle Scholar
Gowardhan, A.A., Ristorcelli, J.R. & Grinstein, F.F. 2011 The bipolar behavior of the Richtmyer–Meshkov instability. Phys. Fluids 23 (7), 071701.10.1063/1.3610959CrossRefGoogle Scholar
Guo, X., Cong, Z., Si, T. & Luo, X. 2022 a Shock-tube studies of single- and quasi-single-mode perturbation growth in Richtmyer–Meshkov flows with reshock. J. Fluid Mech. 941, A65.10.1017/jfm.2022.357CrossRefGoogle Scholar
Guo, X., Si, T., Zhai, Z. & Luo, X. 2022 b Large-amplitude effects on interface perturbation growth in Richtmyer–Meshkov flows with reshock. Phys. Fluids 34 (8), 082118.10.1063/5.0105926CrossRefGoogle Scholar
Haan, S.W. 1991 Weakly nonlinear hydrodynamic instabilities in inertial fusion. Phys. Fluids B 3 (8), 23492355.10.1063/1.859603CrossRefGoogle Scholar
Jacobs, J.W., Jenkins, D.G., Klein, D.L. & Benjamin, R.F. 1995 Nonlinear growth of the shock-accelerated instability of a thin fluid layer. J. Fluid Mech. 295, 2342.10.1017/S002211209500187XCrossRefGoogle Scholar
Jacobs, J.W. & Krivets, V.V. 2005 Experiments on the late-time development of single-mode Richtmyer–Meshkov instability. Phys. Fluids 17 (3), 034105.10.1063/1.1852574CrossRefGoogle Scholar
Jacobs, J.W., Krivets, V.V. & Tsiklashvili, V. 2013 Experiments on the Richtmyer–Meshkov instability with an imposed, random initial perturbation. Shock Waves 23 (4), 407413.10.1007/s00193-013-0436-9CrossRefGoogle Scholar
Jacobs, J.W. & Sheeley, J.M. 1996 Experimental study of incompressible Richtmyer–Meshkov instability. Phys. Fluids 8 (2), 405415.10.1063/1.868794CrossRefGoogle Scholar
Kokkinakis, I.W., Drikakis, D. & Youngs, D.L. 2020 Vortex morphology in Richtmyer–Meshkov-induced turbulent mixing. Physica D 407, 132459.10.1016/j.physd.2020.132459CrossRefGoogle Scholar
Kundu, P.K., Cohen, I. & Dowling, D. 2012 Kinematics. In Fluid Mechanics. 5th edn, pp. 8588. Elsevier Inc.Google Scholar
Kuranz, C.C. 2018 How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants. Nat. Commun. 9 (1), 1564.10.1038/s41467-018-03548-7CrossRefGoogle ScholarPubMed
Latini, M., Schilling, O. & Don, W.S. 2007 High-resolution simulations and modeling of reshocked single-mode Richtmyer–Meshkov instability: comparison to experimental data and to amplitude growth model predictions. Phys. Fluids 19 (2), 024104.10.1063/1.2472508CrossRefGoogle Scholar
Leinov, E., Malamud, G., Elbaz, Y., Levin, L.A., Ben-Dor, G., Shvarts, D. & Sadot, O. 2009 Experimental and numerical investigation of the Richtmyer–Meshkov instability under re-shock conditions. J. Fluid Mech. 626, 449475.10.1017/S0022112009005904CrossRefGoogle Scholar
Li, J., Ding, J., Luo, X. & Zou, L. 2022 a Instability of a heavy gas layer induced by a cylindrical convergent shock. Phys. Fluids 34 (4), 042123.10.1063/5.0089845CrossRefGoogle Scholar
Li, J., Yan, R., Zhao, B., Zheng, J., Zhang, H. & Lu, X. 2022 b Mitigation of the ablative Rayleigh–Taylor instability by nonlocal electron heat transport. Matt. Radiat. Extremes 7 (5), 8.Google Scholar
Li, Y., Samtaney, R. & Wheatley, V. 2018 The Richtmyer–Meshkov instability of a double-layer interface in convergent geometry with magnetohydrodynamics. Matt. Radiat. Extremes 3 (4), 12.Google Scholar
Lindl, J., Landen, O., Edwards, J., Moses, E. & Team, N. 2014 Review of the National Ignition Campaign 2009–2012. Phys. Plasmas 21 (2), 020501.10.1063/1.4865400CrossRefGoogle Scholar
Liu, L., Liang, Y., Ding, J., Liu, N. & Luo, X. 2018 An elaborate experiment on the single-mode Richtmyer–Meshkov instability. J. Fluid Mech. 853, R2.10.1017/jfm.2018.628CrossRefGoogle Scholar
Luo, X., Liu, L., Liang, Y., Ding, J. & Wen, C. 2020 Richtmyer–Meshkov instability on a dual-mode interface. J. Fluid Mech. 905, A5.10.1017/jfm.2020.732CrossRefGoogle Scholar
Mansoor, M.M., Dalton, S.M., Martinez, A.A., Desjardins, T., Charonko, J.J. & Prestridge, K.P. 2020 The effect of initial conditions on mixing transition of the Richtmyer–Meshkov instability. J. Fluid Mech. 904, A3.10.1017/jfm.2020.620CrossRefGoogle Scholar
Meshkov, E.E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4 (5), 101104.10.1007/BF01015969CrossRefGoogle Scholar
Mikaelian, K.O. 1985 Richtmyer–Meshkov instabilities in stratified fluids. Phys. Rev. A 31 (1), 410419.10.1103/PhysRevA.31.410CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 1989 Turbulent mixing generated by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Physica D 36, 343357.10.1016/0167-2789(89)90089-4CrossRefGoogle Scholar
Mikaelian, K.O. 2005 Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells. Phys. Fluids 17 (9), 094105.10.1063/1.2046712CrossRefGoogle Scholar
Mohaghar, M., Carter, J., Musci, B., Reilly, D., McFarland, J. & Ranjan, D. 2017 Evaluation of turbulent mixing transition in a shock-driven variable-density flow. J. Fluid Mech. 831, 779825.10.1017/jfm.2017.664CrossRefGoogle Scholar
Mohaghar, M., Carter, J., Pathikonda, G. & Ranjan, D. 2019 The transition to turbulence in shock-driven mixing: effects of Mach number and initial conditions. J. Fluid Mech. 871, 595635.10.1017/jfm.2019.330CrossRefGoogle Scholar
Morgan, R.V., Aure, R., Stockero, J.D., Greenough, J.A., Cabot, W., Likhachev, O.A., Jacobs, J.W. 2012 On the late-time growth of the two-dimensional Richtmyer–Meshkov instability in shock tube experiments. J. Fluid Mech. 712, 354383.10.1017/jfm.2012.426CrossRefGoogle Scholar
Murakami, M. & Nishi, D. 2017 Optimization of laser illumination configuration for directly driven inertial confinement fusion. Matt. Radiat. Extremes 2 (2), 1468.Google Scholar
Noble, C.D., Ames, A.M., McConnell, R., Oakley, J., Rothamer, D.A. & Bonazza, R. 2023 Simultaneous measurements of kinetic and scalar energy spectrum time evolution in the Richtmyer–Meshkov instability upon reshock. J. Fluid Mech. 975, A39.10.1017/jfm.2023.854CrossRefGoogle Scholar
Ofer, D., Alon, U., Shvarts, D., McCrory, R.L. & Verdon, C.P. 1996 Modal model for the nonlinear multimode Rayleigh–Taylor instability. Phys. Plasmas 3 (8), 30733090.10.1063/1.871655CrossRefGoogle Scholar
Probyn, M.G., Williams, R.J.R., Thornber, B., Drikakis, D. & Youngs, D.L. 2021 2D single-mode Richtmyer–Meshkov instability. Physica D 418, 132827.10.1016/j.physd.2020.132827CrossRefGoogle Scholar
Ranjan, D. 2008 Shock-bubble interactions: features of divergent shock-refraction geometry observed in experiments and simulations. Phys. Fluids 20 (3), 036101.10.1063/1.2840198CrossRefGoogle Scholar
Ranjan, D., Oakley, J. & Bonazza, R. 2011 Shock-bubble interactions. Annu. Rev. Fluid Mech. 43 (1), 117140.10.1146/annurev-fluid-122109-160744CrossRefGoogle Scholar
Richtmyer, R.D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths 13 (2), 297319.10.1002/cpa.3160130207CrossRefGoogle Scholar
Sadot, O., Erez, L., Alon, U., Oron, D., Levin, L.A., Erez, G., Ben-Dor, G. & Shvarts, D. 1998 Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer–Meshkov instability. Phys. Rev. Lett. 80 (8), 16541657.10.1103/PhysRevLett.80.1654CrossRefGoogle Scholar
Samtaney, R., Ray, J. & Zabusky, N.J. 1998 Baroclinic circulation generation on shock accelerated slow/fast gas interfaces. Phys. Fluids 10 (5), 12171230.10.1063/1.869649CrossRefGoogle Scholar
Samtaney, R. & Zabusky, N.J. 1994 Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J. Fluid Mech. 269, 4578.10.1017/S0022112094001485CrossRefGoogle Scholar
Samulski, C., Srinivasan, B., Manuel, J.E., Masti, R., Sauppe, J.P. & Kline, J. 2022 Deceleration-stage Rayleigh–Taylor growth in a background magnetic field studied in cylindrical and Cartesian geometries. Matt. Radiat. Extremes 7 (2), 12.Google Scholar
Sewell, E.G., Ferguson, K.J., Krivets, V.V. & Jacobs, J.W. 2021 Time-resolved particle image velocimetry measurements of the turbulent Richtmyer–Meshkov instability. J. Fluid Mech. 917, A41.10.1017/jfm.2021.258CrossRefGoogle Scholar
Sohn, S. 2011 Inviscid and viscous vortex models for Richtmyer–Meshkov instability. Fluid Dyn. Res. 43 (6), 117.10.1088/0169-5983/43/6/065506CrossRefGoogle Scholar
Sohn, S.I. 2003 Simple potential-flow model of Rayleigh–Taylor and Richtmyer–Meshkov instabilities for all density ratios. Phys. Rev. E 67 (2), 026301.10.1103/PhysRevE.67.026301CrossRefGoogle ScholarPubMed
Soulard, O. & Griffond, J. 2022 Permanence of large eddies in Richtmyer–Meshkov turbulence for weak shocks and high Atwood numbers. Phys. Rev. Fluids 7 (1), 014605.10.1103/PhysRevFluids.7.014605CrossRefGoogle Scholar
Thornber, B. 2017 Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer–Meshkov instability: the $\theta$ -group collaboration. Phys. Fluids 29 (10), 105107.10.1063/1.4993464CrossRefGoogle Scholar
Ukai, S., Balakrishnan, K. & Menon, S. 2011 Growth rate predictions of single- and multi-mode Richtmyer–Meshkov instability with reshock. Shock Waves 21 (6), 533546.10.1007/s00193-011-0332-0CrossRefGoogle Scholar
Urzay, J. 2018 Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 50 (1), 593627.10.1146/annurev-fluid-122316-045217CrossRefGoogle Scholar
Vandenboomgaerde, M., Cherfils, C., Galmiche, D., Gauthier, S. & Raviart, P.A. 2003 Efficient perturbation methods for Richtmyer–Meshkov and Rayleigh–Taylor instabilities: weakly nonlinear stage and beyond. Laser Part. Beams 21 (3), 321325.10.1017/S0263034603213057CrossRefGoogle Scholar
Vandenboomgaerde, M., Gauthier, S. & Mügler, C. 2002 Nonlinear regime of a multimode Richtmyer–Meshkov instability: a simplified perturbation theory. Phys. Fluids 14 (3), 11111122.10.1063/1.1447914CrossRefGoogle Scholar
Vandenboomgaerde, M., Mügler, C. & Gauthier, S. 1998 Impulsive model for the Richtmyer–Meshkov instability. Phys. Rev. E 58 (2), 18741882.10.1103/PhysRevE.58.1874CrossRefGoogle Scholar
Vetter, M. & Sturtevant, B. 1995 Experiments on the Richtmyer–Meshkov instability of an air/SF $_6$ interface. Shock Waves 4, 247252.10.1007/BF01416035CrossRefGoogle Scholar
Wang, H., Ding, J., Si, T. & Luo, X. 2022 Richtmyer–Meshkov instability of a single-mode interface with reshock. Acta Aerodyn. Sin. 40 (1), 3340.Google Scholar
Wang, M., Si, T. & Luo, X. 2013 Generation of polygonal gas interfaces by soap film for Richtmyer–Meshkov instability study. Exp. Fluids 54 (1), 1427.10.1007/s00348-012-1427-9CrossRefGoogle Scholar
Weber, C., Haehn, N., Oakley, J., Anderson, M. & Bonazza, R. 2012 Richtmyer–Meshkov instability on a low Atwood number interface after reshock. Shock Waves 22 (4), 317325.10.1007/s00193-012-0367-xCrossRefGoogle Scholar
Xie, H., Qi, H., Xiao, M., Zhang, Y. & Zhao, Y. 2025 An intermittency based Reynolds-averaged transition model for mixing flows induced by interfacial instabilities. J. Fluid Mech. 1002, A31.10.1017/jfm.2024.1160CrossRefGoogle Scholar
Youngs, D.L. 1994 Numerical simulation of mixing by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Laser Part. Beams 12 (4), 725750.10.1017/S0263034600008557CrossRefGoogle Scholar
Youngs, D.L. & Williams, R.J. 2008 Turbulent mixing in spherical implosions. Intl J. Numer. Meth. Fluids 56 (8), 15971603.10.1002/fld.1594CrossRefGoogle Scholar
Zabusky, N.J. 1999 Vortex paradigm for accelerated inhomogeneous flows: visiometrics for the Rayleigh–Taylor and Richtmyer–Meshkov environments. Annu. Rev. Fluid Mech. 31 (1), 495536.10.1146/annurev.fluid.31.1.495CrossRefGoogle Scholar
Zhang, D., Ding, J., Si, T. & Luo, X. 2023 a Divergent Richtmyer–Meshkov instability on a heavy gas layer. J. Fluid Mech. 959, A37.10.1017/jfm.2023.161CrossRefGoogle Scholar
Zhang, Q., Deng, S. & Guo, W. 2018 Quantitative theory for the growth rate and amplitude of the compressible Richtmyer–Meshkov instability at all density ratios. Phys. Rev. Lett. 121 (17), 174502.10.1103/PhysRevLett.121.174502CrossRefGoogle ScholarPubMed
Zhang, Q. & Guo, W. 2016 Universality of finger growth in two-dimensional Rayleigh–Taylor and Richtmyer–Meshkov instabilities with all density ratios. J. Fluid Mech. 786, 4761.10.1017/jfm.2015.641CrossRefGoogle Scholar
Zhang, Q. & Sohn, S.I. 1997 Nonlinear theory of unstable fluid mixing driven by shock wave. Phys. Fluids 9 (4), 11061124.10.1063/1.869202CrossRefGoogle Scholar
Zhang, Y., Zhao, Y., Ding, J. & Luo, X. 2023 b Richtmyer–Meshkov instability with a rippled reshock. J. Fluid Mech. 968, A3.10.1017/jfm.2023.491CrossRefGoogle Scholar
Zhao, Y., Ding, J., He, D., Zhou, Z. & Luo, X. 2025 Convergent Richtmyer–Meshkov turbulence by time-resolved planar laser-induced fluorescence measurement. J. Fluid Mech. 1007, A30.10.1017/jfm.2025.59CrossRefGoogle Scholar
Zhou, Y. 2017 a Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720-722, 1136.Google Scholar
Zhou, Y. 2017 b Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723-725, 1160.Google Scholar
Zhou, Z., Ding, J. & Cheng, W. 2024 Mixing and inter-scale energy transfer in Richtmyer–Meshkov turbulence. J. Fluid Mech. 984, A56.10.1017/jfm.2024.240CrossRefGoogle Scholar